Section 4 : Surplus du consommateur, surplus du producteur et surplus social
Conditions d’achèvement
2. Le surplus du consommateur
Le
surplus du consommateur mesure l’avantage que les consommateurs retirent de
l’existence d’un marché dans lequel toutes les transactions se font à un prix
unique, le prix d’équilibre.
Sur le graphique ci-dessus, les
demandeurs dépensent p*·Q*, dépense représentée par la surface du rectangle
OPEQ. Or, supposons que les producteurs aient la possibilité de discriminer
entre les consommateurs, de sorte qu’ils puissent leur faire effectivement
payer le prix qu’ils sont réellement disposés à verser pour acquérir les
quantités concernées. Dans ce cas, par exemple, la quantité QX
serait acquise au prix pX, pour une dépense totale égale à pX·QX.
La quantité comprise entre QX et QY serait payée pY
et la dépense totale pour QY serait pX·QX + pY·(QY-QX).
Enfin, la quantité comprise entre QY et Q* serait payée au prix
d’équilibre p* et la dépense totale cumulée des demandeurs s’établirait alors à
pX·QX + pY·(QY-QX) + p*·(Q*-QY).
Cet exemple illustre clairement le fait que dans cette éventualité, les
consommateurs auraient du payer plus qu’ils ne le font réellement pour acquérir
la quantité Q*. Dans leur ensemble, les consommateurs auraient dû dépenser
p*·Q* plus la surface hachurée sur le graphique. Si l’on pousse le raisonnement
à l’éventualité d’une discrimination parfaitement continue entre les
consommateurs, alors chaque consommateur verserait le prix qu’il est
personnellement disposé à verser pour acquérir le bien. Dans ce cas, la dépense
totale de ces derniers pour acquérir une quantité Q* du bien s’élèverait à la
surface OAEQ. L’existence d’un marché sur lequel toutes les transactions
s’effectuent au prix unique d’équilibre p* leur permet de ne dépenser pour
cette quantité que p*·Q*, ce qui correspond à la surface OPEQ. De fait, les
consommateurs retirent de l’existence de ce marché un avantage qui peut être mesuré
par la surface du triangle PAE : il s’agit du surplus du consommateur. Ce
surplus est aisément mesurable si l’on connaît les fonctions d’offre et de
demande, car on connaît alors les valeurs de p* et de Q*, ainsi que celle de pA
qui correspond au prix maximum que sont prêts à verser les demandeurs. Le
surplus du consommateur vaut alors :
SC = 0,5·(pMAX – p*)·Q*
Il est important de bien
comprendre que la valeur du surplus du consommateur représente une économie
potentielle que ces derniers réalisent par rapport à la situation dans laquelle
une discrimination entre les consommateurs serait possible. Il ne s’agit donc en
quelque sorte que d’un « gain psychologique ». Les consommateurs dépensent moins
que ce qu’ils auraient eu à dépenser en l’absence d’un marché à prix unique ;
en aucun cas le surplus du consommateur ne représente une somme versée à ces
derniers.