Dérivation d'une fonction de $\mathbb R$ dans $\mathbb R$

Ce cours vous est proposé par Odile Brandière, Université de Paris Sud 11, UFR Jean Monnet et AUNEGe, l'Université Numérique en Économie Gestion.

Table des matières

Introduction	2
Nombre dérivé en $x0$ - coefficient directeur de la tangente en $M0x0$, $fx0$	3
Nombre dérivé en x0	3
Nombre dérivé et coefficient directeur de la tangente à une courbe	4
Dérivabilité et continuité en $x0$	5
Fonction dérivée	6
Définitions	6
Fonctions dérivées à connaître ainsi que leur ensemble de dérivation	7
Opérations	7
Dérivée d'une fonction composée	8
Dérivée d'une fonction réciproque	8
Dérivées successives	10
Tangentes verticales – Demi-tangentes – Points de rebroussement	10
Tangentes verticales	10
Nombre dérivé à droite ou à gauche et demi-tangente	11
Points de rebroussement	13
Références	14

Introduction

Objectif de la leçon: Cette leçon est un outil fondamental pour l'étude locale des fonctions qui sera abordée dans les leçons 5 et 6.

L'objectif en est : une fonction f étant donnée, savoir déterminer son ensemble de dérivation Df', savoir déterminer la fonction dérivée f' de f (être capable d'appliquer tous les théorèmes du cours permettant ce calcul, en particulier celui concernant les fonctions composées). Prendre l'initiative d'étudier le nombre dérivé de f aux bornes de Df'. Connaître les liens entre nombre dérivé (éventuellement à droite et à gauche) et tangente à la représentation graphique (savoir écrire une équation de tangente ou de demi-tangente).

Remarque: Là encore cette leçon contient beaucoup de rappels de notions étudiées en lycée et certaines sont approfondies.

Nombre dérivé en x_0 - coefficient directeur de la tangente en $M_0\big(x_0,f(x_0)\big)$

Notation: On utilisera souvent la notation x_0 pour désigner une valeur de x que l'on fixe.

Nombre dérivé en x_0

Soit f une fonction de \mathbb{R} dans \mathbb{R} , Df son ensemble de définition et x_0 un point d'un intervalle ouvert I inclus dans Df. Dans toute cette leçon, I désignera toujours un intervalle ouvert

$$(I =] - \infty; \ b[\ OU \] \ a; \ b[\ OU \] a; + \infty[\).$$

Définition: f est dérivable en x_0 de I si et seulement si $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}$ existe et est réelle. Cette limite est appelée nombre dérivé de f en x_0 et se note $f'(x_0)$.

Remarque : on a aussi
$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$
.

Il est parfois utile de savoir reconnaître en une limite un nombre dérivé. Il faut alors déterminer x_0 , et $f.x_0$, n'est pas difficile à trouver puisqu'il est sous le symbole limite.

$$\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}$$

D'autre part, une fois x_0 déterminé, il faut que figure au dénominateur $x-x_0$, la quantité restant au numérateur doit alors s'annuler en x_0 (la limite a une forme indéterminée " $\frac{0}{0}$ "!), il reste à la mettre sous la forme $f(x)-f(x_0)$.

On note aussi parfois $f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta f(x_0)}{\Delta x}$, $\Delta f(x_0)$ représente ici l'accroissement de f(x) quand x augmente de $h(=\Delta x = x - x_0)$ en $x_0 : \Delta f(x_0) = f(x_0 + \Delta x) - f(x_0)$.

Notation différentielle : $f'(x_0) = \left(\frac{df}{dx}\right)_{x_0}$, $O \cup df(x_0) = f'(x_0)dx$.

Attention: ne pas confondre df et Δf :

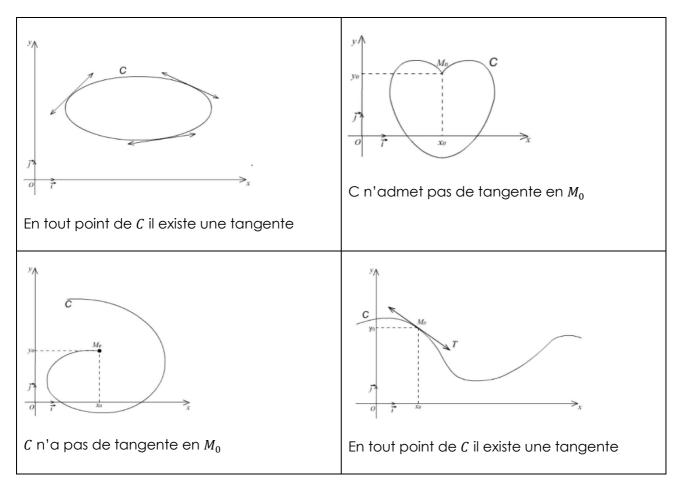
 $\Delta f(x_0) = f(x_0 + \Delta x) - f(x_0)$ et $df(x_0) = f'(x_0)dx$. Ces quantités sont « v voisines » si $dx = \Delta x = x - x_0$ est « proche » de 0 et parfois on approxime l'une par l'autre mais il y a une erreur qu'il faut alors savoir évaluer ou du moins majorer en valeur absolue. Ceci sera développé dans la leçon 5.

Néanmoins Δf et df sont de même signe comme nous le verrons dans la leçon 6.

En économie, on étudie souvent le signe de df, qui est en général plus simple à calculer, pour en déduire celui de Δf .

Nombre dérivé et coefficient directeur de la tangente à une courbe

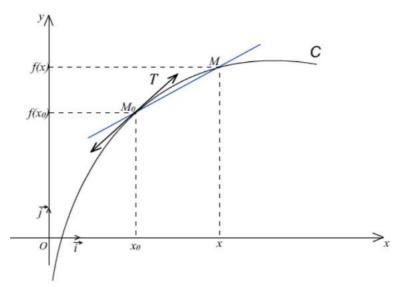
La **tangente** T à une courbe C en M est la droite limite de (M_0M) , quand M se rapproche de M_0 (aussi bien par la droite que par la gauche) tout en restant sur la courbe C. Cette droite n'existe pas toujours.



On remarque que, pour que T existe en un point M_0 de C(f), il est nécessaire que f soit continue en x_0 .

Tangente à la représentation graphique de f en un point M_0 de $\mathcal{C}(\mathbf{f})$

Quand T existe, T est la position limite de (MM_0) quand M(x,f(x)) parcourt C(f) en se rapprochant de M_0 .



Le coefficient directeur de (MM_0) est $\frac{f(x)-f(x_0)}{x-x_0}$.

Puisque f est continue en x_0 , M se rapproche de M_0 si et seulement si x tend vers x_0 .

Le coefficient directeur de (MM_0) tend alors vers celui de T, s'il existe (c'est-à-dire, T est non verticale).

D'où le coefficient directeur de $T = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$.

Ainsi, si T existe et a un coefficient directeur, f admet un nombre dérivé en x_0 et réciproquement.

Et T est la droite passant par $M_0(x_0, f(x_0))$ et de coefficient directeur $f'(x_0)$, son équation est donc $y - f(x_0) = f'(x_0)(x - x_0)$.

Théorème 1: La représentation graphique de f admet une tangente non verticale en $M_0(x_0, f(x_0))$, si et seulement si f est dérivable en x_0 .

Son coefficient directeur est alors $f'(x_0)$ et son équation est de la forme :

$$y = f'(x_0)(x - x_0) + f(x_0)$$

Dérivabilité et continuité en x_0

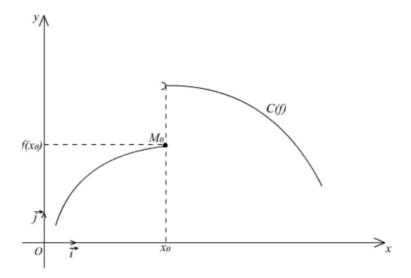
Propriété : Si f est dérivable en x_0 alors f est continue en x_0 .

Preuve : Si f est dérivable en x_0 ,

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) \text{ et } \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) + \varepsilon(x - x_0) \text{ avec } \lim_{x \to x_0} \varepsilon(x - x_0) = 0.$$

Donc
$$f(x) = f(x_0) + (x - x_0)f'(x_0) + (x - x_0)\varepsilon(x - x_0)$$
 et $\lim_{x \to x_0} f(x) = f(x_0)$

En effet, en un point de discontinuité, la courbe ne peut pas admettre de tangente.



C(f) n'admet pas de tangente en M_0 , point de discontinuité.

Attention: Dérivabilité ⇒ continuité. Mais la réciproque est fausse.

Fonction dérivée

Définitions

- Soit f une fonction définie sur un intervalle ouvert I, on dit que f est dérivable sur I si et seulement si elle est dérivable en tout point de I.
- L'application qui à x de I associe f'(x), le nombre dérivé de f en x, s'appelle la fonction dérivée de f sur I (ou dérivée de f sur I), notée f' ou $\frac{df}{dx}$.

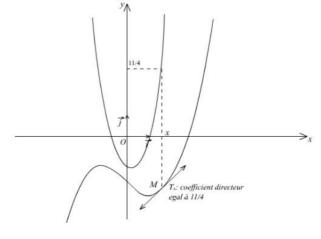
$$f'(x): I \to \mathbb{R}$$

 $x \mapsto f'(x)$

On pourra définir f' sur une réunion d'intervalles ouverts où f est dérivable.

Remarque: on notera bien la différence entre nombre dérivé et fonction dérivée.

Voici un dessin permettant de bien comprendre le lien entre la fonction et sa dérivée.



Fonctions dérivées à connaître ainsi que leur ensemble de dérivation

Nous admettrons les résultats suivants :

D(f)	\mathbb{R}	\mathbb{R}	\mathbb{R}	R *	[0,+∞[R	\mathbb{R}
f(x)	C (cte)	ax + b	$x^n (n \in \mathbb{N})$	$\frac{1}{x}$	\sqrt{x}	sinx	cosx
D'(f)	R	\mathbb{R}	\mathbb{R}	R *]0,+∞[R	\mathbb{R}
<i>f</i> ′(<i>x</i>)	0	а	nx^{n-1}	$\frac{-1}{x^2}$	$\frac{1}{2\sqrt{x}}$	cosx	-sinx

D(f)	$\mathbb{R}\backslash\left\{\frac{\pi}{2}+k\pi\right\}k\in\mathbb{Z}$	R+*	ℝ*	\mathbb{R}
f(x)	tanx	lnx	ln x	e ^x
D'(f)	$\mathbb{R}\backslash\left\{\frac{\pi}{2}+k\pi\right\}k\in\mathbb{Z}$	R+*	ℝ*	\mathbb{R}
<i>f</i> ′(<i>x</i>)	$1 + tan^2x$	$\frac{1}{x}$	$\frac{1}{x}$	e^x

 $[\]mathbb{R}^*$ (tous les réels sauf 0)

 \mathbb{R}^{+*} (tous les réels >0)

D(f) désigne l'ensemble de définition de f et D'(f) l'ensemble de dérivabilité de f, c'est-à-dire les valeurs de x pour lesquelles f est dérivable.

Attention: D'(f) n'est pas toujours l'ensemble de définition D(f') de l'expression donnée par f', en tous cas ce n'est pas ainsi qu'on détermine D'(f).

Opérations

Théorème: Si f et g sont deux fonctions dérivables sur I, alors f+g, f.g et af ($a \in \mathbb{R}$) sont dérivables sur I, et on a :

Fonction	f+g	fg	$af (a \in \mathbb{R})$		
Dérivée	f' + g' f'g + fg' af'				
Si de plus g est non nulle sur $I, \frac{1}{g}, \frac{f}{g}$ et $g^n (n \in \mathbb{Z}$ (ensemble des entiers relatifs)) sont dérivables sur I et on a :					
Fonction $\frac{1}{g}$		$\frac{f}{g}$	g^n		

Remarque utile: On sait que si $n \in \mathbb{N}^*$, $x^{-n} = \frac{1}{x^{n'}}$ et d'après les résultats ci-dessus, pour $x \in \mathbb{R}^*$, la dérivée de $\frac{1}{x^n}$ est $-\frac{nx^{n-1}}{x^{2n}} = -nx^{-n-1}$. Ainsi on a : pour tout $n \in \mathbb{Z}^*$, la dérivée de $x^n = n x^{n-1}$.

Par exemple pour dériver $\frac{1}{x^3}$, il sera plus astucieux d'écrire $\frac{1}{x^3} = x^{-3}$ et d'utiliser la formule ci-dessus avec n = -3. Ainsi la dérivée de $\frac{1}{x^3}$ est, pour $x \neq 0$, $-3x^{-4} = \frac{-3}{x^4}$.

Dérivée d'une fonction composée

Dérivée

Théorème: Si f est dérivable sur I et si g dérivable sur I, alors $g \circ f$ est dérivable sur I et on a :

$$\forall x \in I \quad (g \circ f)'(x) = g'(f(x)) \cdot f'(x)$$

Notation différentielle : Si $h = g \circ f$ et si y = f(x): $\left(\frac{dh}{dx}\right) = \left(\frac{dg}{dy}\right) \cdot \left(\frac{dy}{dx}\right)$

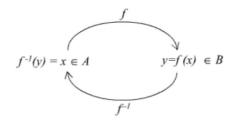
Dérivée d'une fonction réciproque

Rappel de la leçon 1: Une application f est une bijection de A dans B si et seulement si tout élément de y de B a un et un seul antécédent par g dans A. C'est-à-dire que pour tout y de B donné, l'équation y = f(x) a une seule solution x dans A.

On définit ainsi une nouvelle fonction $y \mapsto x$ de B vers A telle que y = f(x) (à tout y on associe son antécédent).

On note $x = f^{-1}(y) \cdot f^{-1}$ s'appelle la fonction réciproque de f. Pour $x \in A$ et $y \in B$:

$$(y = f(x)) \Leftrightarrow (x = f^{-1}(y))$$



Si f est dérivable en x_0 appartenant à A, on peut se poser la question de savoir si f^{-1} l'est en $y_0 = f(x_0)$ de B. Essayons de calculer le nombre dérivé de f^{-1} en y_0 :

$$(f^{-1})'(y_0) = \lim_{y \to y_0} \frac{f^{-1}(y) - f^{-1}(y_0)}{y - y_0} = \lim_{y \to y_0} \frac{x - x_0}{f(x) - f(x_0)} \quad \text{(avec } y = f(x) \text{ et } y_0 = f(x_0) \text{)}$$

Or $x \to x_0$ si et seulement si $y \to y_0$, d'où $(f^{-1})'(y_0) = \frac{1}{\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}} = \frac{1}{f'(x_0)} = \frac{1}{f'(f^{-1}(y_0))}$. Et donc

$$(f^{-1})' = \frac{1}{f' \circ f^{-1}}$$
 si $f' \circ f^{-1} \neq 0$

Conséquence importante : $(\sqrt[n]{x})' = \frac{1}{n(\sqrt[n]{x})^{n-1}}$

Démonstration: (peut être sautée)

Soit $f: \mathbb{R}^+ \to \mathbb{R}^+$ et $n \in \mathbb{N}$ (ensemble des entiers naturels sauf 0)

$$x \mapsto x^n$$

f est une bijection et $f'(x) = nx^{n-1}$. Donc f admet une fonction réciproque f^{-1} définie sur \mathbb{R}^+ . On la note $\sqrt[n]{n}$:

$$y = x^n \Leftrightarrow x = \sqrt[n]{y}$$

Donc pour $y \neq 0$, $f' \circ f^{-1}(y) \neq 0$ et f^{-1} est dérivable. D'après la formule précédente :

C'est bien le résultat annoncé.

$$\left(\sqrt[n]{y}\right)' = \frac{1}{n\left(\sqrt[n]{y}\right)^{n-1}}$$

Ce résultat est difficile à retenir tel que. Par contre l'écriture à l'aide d'exposants fractionnaires, nous conduit à une formule simple et connue.

Exposants fractionnaires: Cette écriture permet une manipulation plus commode des racines.

Pour x > 0, on note $\sqrt[n]{x} = x^{1/n}$ et $x^{-n} = \frac{1}{x^n}$, on écrit alors

Pour
$$x > 0$$
, $\sqrt[n]{x^p} = \left(\sqrt[n]{x}\right)^p = x^{p/n} (n \in \mathbb{N}^*, p \in \mathbb{Z})$

Et on remarque alors que pour $r \in \mathbb{Q}$ (ensemble des fractions) (r s'écrit alors de façon unique sous la forme d'une fraction irréductible $\frac{p}{n}$),

Pour
$$x > 0(x^r)' = rx^{r-1}$$

Cette notation à l'aide des exposants fractionnaires est très pratique, en effet toutes les règles (y compris les règles de dérivation) sur les exposants entiers restent valables avec les exposants fractionnaires (pour x > 0).

De même si f > 0 et si $r \in Q : (f^r)' = rf^{r-1} \cdot f'$.

Si r n'est pas entier et si $r \ge 1$, $D'(f^r) = \{x \in \mathbb{R} / x \in D'(f) | f(x) \ge 0\}$, et si r < 1, $D'(f^r) = \{x \in \mathbb{R} / x \in D'(f) | et | f(x) > 0\}$.

Dérivées successives

Soit f une fonction dérivable sur I. Si f' est elle-même dérivable sur I, sa dérivée est appelée **dérivée seconde** de f et est notée f'' ou $f^{(2)}$.

On dit que f est **deux fois dérivable** sur I. En itérant on obtient :

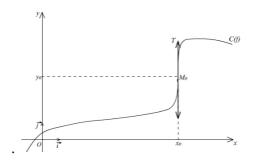
- $f^{(3)}$, dérivée de f'' est la dérivée troisième (ou d'ordre 3) de f... etc
- $f^{(n)}$, dérivée de $f^{(n-1)}$ est la **dérivée n**ième (ou d'ordre n) de f.
- $f', f'', f^{(3)}, \dots f^{(n)}$ sont les **dérivées successives** de f.

Tangentes verticales – Demi-tangentes – Points de rebroussement

Tangentes verticales

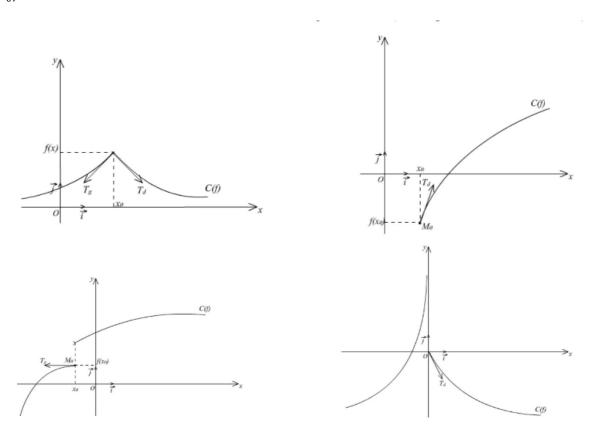
Plus le coefficient directeur d'une droite est grand en valeur absolue, plus la droite se rapproche de la position verticale. Une droite verticale n'a pas vraiment de coefficient directeur mais on peut considérer que son coefficient directeur est infini.

Aussi, si $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h} = +\infty$ (ou $-\infty$) f n'est pas dérivable en x_0 , néanmoins, C(f) admet une tangente verticale en $M_0(x_0, f(x_0))$



Nombre dérivé à droite ou à gauche et demi-tangente

Soit f une fonction définie et continue à droite ou à gauche de x_0 (mais à priori non dérivable en x_0).



Dans les quatre cas de figures évoqués par le dessin, f n'est pas dérivable en x_0 et C(f) n'admet pas de tangente en $M_0(x_0; f(x_0))$. Par contre les droites du dessin nommées T_g et T_d apparaissent comme tangentes à gauche ou à droite de M_0 et comme des positions limites de cordes $[M_0; M]$, quand M se déplace sur C(f), mais d'un seul côté de M_0 , c'est-à-dire pour des valeurs de x plus petites que x_0 , ou plus grandes que x_0 . Ces droites T_g et T_d s'appellent respectivement des demi-tangentes à gauche et à droite de M_0 . Lorsqu'elles existent et qu'elles sont non verticales on dit que f admet respectivement un nombre dérivé à gauche et à droite, ces nombres dérivés sont égaux aux coefficients directeurs des demi-tangentes.

Ainsi, si nous revenons à notre dessin :

- Pour (1), f admet un nombre dérivé en x_0 à gauche égal à 1 et à droite égal à -1
- Pour (2), f admet un nombre dérivé en x_0 à droite égal à 2
- Pour (3), f admet un nombre dérivé en x_0 à gauche égal à 0
- Pour (4), f admet un nombre dérivé en 0 à droite égal à -2.

Définition: Si $\lim_{x\to x_0^+} \frac{f(x)-f(x_0)}{x-x_0}$ existe, on dit que f est dérivable à droite en x_0 , ou que f admet un nombre dérivé à droite en x_0 et on note $f'_d(x_0)$:

$$f'_d(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$$

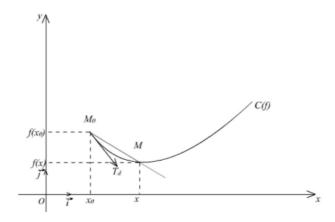
(Rappel : cette limite est calculée pour $x > x_0$, et seules les valeurs de f(x) pour $x > x_0$ interviennent).

lci x_0 peut être une borne de Df.

Interprétation géométrique : Un point M de la courbe C(f) d'équation y = f(x), est situé à droite du point M_0 de C(f) si et seulement si l'abscisse x de M est supérieur à l'abscisse x_0 de M_0 .

Le coefficient directeur de $[M_0; M]$ est $\frac{f(x)-f(x_0)}{x-x_0}$, et quand x tend vers x_0 en restant supérieur à x_0 , M se rapproche de M_0 par la droite et $[M_0; M]$ tend vers la position de demi-tangente à droite à $\mathcal{C}(f)$ en M_0 .

Ainsi si $\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$ existe, cette demi-tangente existe et admet pour coefficient directeur $f'_d(x_0)$. Son équation est : $y = f_d'(x_0)(x - x_0) + f(x_0)$ avec $x > x_0$.

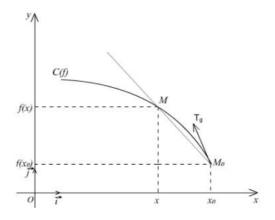


On obtient des résultats analogues en considérant les valeurs de x inférieures à x_0 .

Définition: Si $\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}$ existe, on dit que f est dérivable à gauche en x_0 , ou que f admet un nombre dérivé à gauche en x_0 et on note $f_g'(x_0) = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}$.

Et si $\lim_{x\to x_0^-} \frac{f(x)-f(x_0)}{x-x_0}$ existe, la demi-tangente à gauche à C(f) en M_0 existe et admet pour coefficient directeur $fg'(x_0)$.

Son équation est : $y = f'_g(x_0)(x - x_0) + f(x_0)$ avec $x < x_0$.



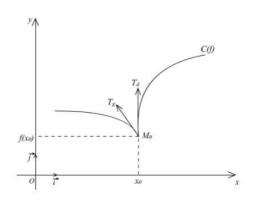
Tous ces résultats se prolongent si ces limites sont infinies :

Si $\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = +\infty$ ou $-\infty$, $\mathcal{C}(f)$ admet une demi-tangente verticale à droite en $M_0(x_0, f(x_0))$, et $\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = +\infty$ ou ou $-\infty$, $\mathcal{C}(f)$ admet une demi-tangente verticale à gauche en $M_0(x_0, f(x_0))$.

Points de rebroussement

Si f est définie en x_0 et admet des nombres dérivés à droite et à gauche distincts (éventuellement infinis) en x_0 , f n'est pas dérivable en x_0 mais $\mathcal{C}(f)$ admet deux demi-tangentes distinctes en $M_0(x_0, f(x_0))$.

On dit que $M_0(x_0, f(x_0))$ est un point de rebroussement de C(f).



Références

Comment citer ce cours?

Mathématiques 1, Odile Brandière, AUNEGe (http://aunege.fr), CC – BY NC ND (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Cette œuvre est mise à disposition dans le respect de la législation française protégeant le droit d'auteur, selon les termes du contrat de licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Pas de Modification 4.0 International (http://creativecommons.org/licenses/by-nc-nd/4.0/). En cas de conflit entre la législation française et les termes de ce contrat de licence, la clause non conforme à la législation française est réputée non écrite. Si la clause constitue un élément déterminant de l'engagement des parties ou de l'une d'elles, sa nullité emporte celle du contrat de licence tout entier.