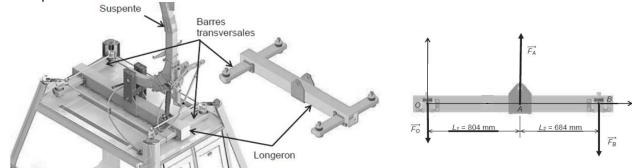
Eléments de correction - Structure de télécabine

Objectif : Mobiliser ses connaissances pour résoudre un problème de RDM

PRESENTATION

La cabine est liée à la suspente via une pièce en forme de H. L'étude consiste à vérifier la résistance du longeron après modification du matériau



Données:

La force exercée par la suspente au point A est verticale et d'intensité F_A=18500N. Le poids du longeron est négligé

Les liaisons en O et B entre le longeron et les barres transversales sont étroites et permettent un rotulage Le longeron est un tube rectangulaire creux de base b=150mm, de hauteur h=200mm, d'épaisseur e=7mm

Le matériau envisagé est un alliage d'aluminium de limite élatique Re=200MPa

Le cahier des charges fixe un coefficient de sécurité Cs=5

Le rotulage admissible au niveau des liaisons ne peut pas dépasser 0,05°

Question 1 : Proposer une modélisation du problème posé

Question 2 : Déterminer les actions de liaison

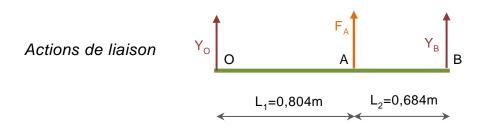
Question 3 : Déterminer les efforts intérieurs le long de la poutre. Déduire la section la plus sollicitée

Question 4 : Calculer la contrainte maximale dans la section la plus sollicitée ainsi que le rotulage maximal au niveau des liaisons (en O ou en B)

Question 5 : Conclure sur le respect du cahier des charges et discuter des hypothèses formulées

Modélisation F_A Charge ponctuelle $C_{1}=0.804$ $C_{2}=0.684$

Liaisons supposées ponctuelles étant données les forces appliquées sur la figure



On isole la poutre

Bilan des actions mécaniques sur la figure (on pose $L_1 + L_2 = L$)

$$\begin{split} \sum \overrightarrow{F_{ext \to (S)}} &= \overrightarrow{0} & /x : 0 = 0 \\ \sum \overrightarrow{F_{ext \to (S)}} &= \overrightarrow{0} & /y : Y_0 + F_A + Y_B = 0 \\ \sum \overrightarrow{M_{Oext \to (S)}} &= \overrightarrow{0} & /z : F_A \cdot L_1 + Y_B \cdot (L_1 + L_2) = 0 \\ \end{split}$$

$$Y_B = -F_A \cdot \frac{L_1}{L} - 10000 \, N$$

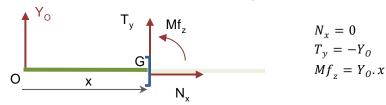
$$Y_O = -F_A \cdot \frac{L_2}{L} = -8500 \, N$$

Efforts intérieurs

2 zones d'étude (OA) et (OB)

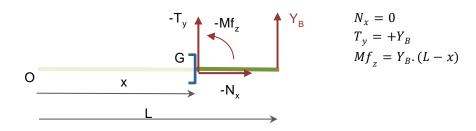
Zone (OA): on isole la partie gauche

L'équilibre conduit aux efforts intérieurs



Zone (AB) : on isole la partie droite (c'est plus simple à résoudre)

L'équilibre conduit aux efforts intérieurs



Les diagrammes ou les équations obtenues permettent :

1/ d'identifier la nature de la sollicitation : ici flexion simple

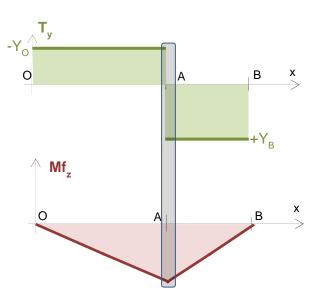
2/ d'identifier la section droite la plus

sollicitée : ici la section au droit de l'effort en A

$$T_y(L_1) = Y_B = -10000 N$$

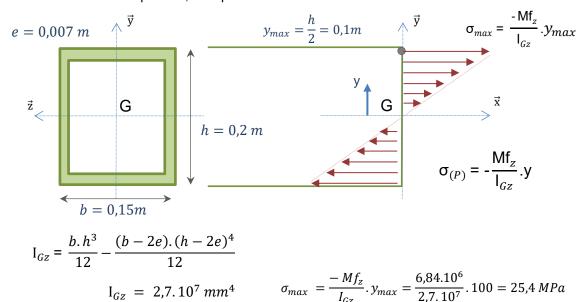
 $Mf_z(0) = Y_B. L_2 = -6840 N. m$

<u>Remarque</u> : pour la suite, on néglige l'effet de l'effort tranchant



Contraintes

Dans la section au point A, la répartition des contraintes est la suivante



On peut déterminer la contrainte de cisaillement moyenne due à l'effort tranchant pour vérifier l'hypothèse posée précédemment

$$\tau_{moy} = \frac{T_y}{S} = \frac{-10000}{2 \cdot e \cdot (b+h)} = \frac{-10000}{2 \cdot 7 \cdot 350} = -2,04 \text{ MPa}$$

<u>Remarque</u> : on vérifie bien que la contrainte tangentielle peut être négligée par rapport à la contrainte normale

Déplacements

Le rotulage correspond à l'angle que fait la ligne moyenne de la poutre déformée avec l'axe x. Il s'agit alors de la pente de la déformée soit v'.

Cette valeur est maximale au point B car l'appui en B est plus proche de la force appliquée

Il faut intégrer les équations donnant v''(x) sur les deux zones d'étude

$$E.I_{Gz}.v_1'' = Mf_z = Y_0.x$$

$$E.I_{Gz}.v_1' = Y_0.\frac{x^2}{2} + C_1$$

$$E.I_{Gz}.v_1 = Y_0.\frac{x^3}{6} + C_1.x + C_2$$

$$E.I_{Gz}.v_2'' = Mf_z = Y_B.(L - x)$$

$$E.I_{Gz}.v_2' = -Y_B.\frac{(L - x)^2}{2} + C_3$$

$$E.I_{Gz}.v_2 = Y_B.\frac{(L - x)^3}{6} - C_3.(L - x) + C_4$$

Les conditions aux limites sont

- Déplacement nul en O soit $v_1(0) = 0$ On déduit $C_2 = 0$
- Déplacement nul en B soit $v_2(L) = 0$ On déduit $C_4 = 0$
- Continuité de la poutre et de la pente en A soit $v_1(L_1) = v_2(L_1)$ et $v_1'(L_1) = v_2'(L_1)$

On déduit

$$\begin{aligned} Y_O.\frac{{L_1}^2}{2} + C_1 &= -Y_B.\frac{(L-L_1)^2}{2} + C_3 \\ Y_O.\frac{{L_1}^3}{6} + C_1.L_1 &= Y_B.\frac{(L-L_1)^3}{6} - C_3.(L-L_1) \end{aligned}$$

On trouve:

$$C_1 = -Y_B \cdot \frac{(L - L_1)^3}{3 \cdot L} + Y_O \cdot \frac{{L_1}^2}{3 \cdot L} - Y_O \cdot \frac{{L_1}^2}{2}$$

$$C_3 = Y_O \cdot \frac{{L_1}^3}{3 \cdot L} + Y_B \cdot \frac{(L - L_1)^2}{2 \cdot L} L_1 - Y_B \cdot \frac{(L - L_1)^3}{6 \cdot L}$$

Le rotula ge maximale a lieu au niveau de l'appui B et vaut donc $v_2'(L)$

$$v_2'(L) = \frac{C_3}{E \cdot I_{Gz}} = 0.02^{\circ}$$

Critères

Critère de résistance

On vérifie

$$\sigma_{max} = 25,40 \ MPa \le \frac{Re}{Cs} = 40 \ MPa$$

Le critère de résistance est vérifié

Critère de rigidité

On vérifie

$$v'_{(L)} = 0.02^{\circ} \le 0.05^{\circ}$$

Le critère de rigidité est vérifié

<u>Remarque</u> : dans la réalité, on voit sur la photo qu'il existe vraisemblablement un jeu dans la liaison, ce qui augmente sensiblement le rotulage au niveau de la liaison