Leçon 05 - Correction des "exercez-vous"

Exercez-vous 2: 1) Résoudre (1): $x'(t) = 5x(t) + 5t^2 - 7t + 3$. 2) Résoudre (1): $x'(t) + 2x(t) = 2te^{-2t}$.

Solution

1) D'après le cours la solution de l'équation homogène associée est ke^{5t} et

$$x(t) = ke^{5t} + x*(t) k \in \mathbf{R}.$$

On choisira $x^*(t)$ de la forme $x^*(t) = at^2 + bt + c$. $x^*(t)$ vérifie (1) puisque s'en est une solution particulière. On a donc

 $2at + b = 5(at^2 + bt + c) + 5t^2 - 7t + 3$, soit en ordonnant

 $t^2(5a + 5) + t(-2a + 5b - 7) + (-b + 5c + 3) = 0$. Ce polynôme en t doit s'annuler pour une infinité de valeurs de t, ses coefficients sont donc nuls et

$$\begin{cases} 5a + 5 = 0 \\ -2a + 5b - 7 = 0 \\ -b + 5c + 3 = 0 \end{cases}$$
 d'où $a = -1$, $b = 1$ et $c = -\frac{2}{5}$ et x^* (t) $= -t^2 + t - \frac{2}{5}$, d'où

$$x(t) = ke^{5t} - t^2 + t - \frac{2}{5} \text{ avec } k \in \mathbf{R}$$

2) D'après le cours la solution de l'équation homogène associée est ke^{-2t} et

$$x(t) = ke^{-2t} + x*(t) k \in \mathbf{R}.$$

On choisira $x^*(t)$ de la forme $x^*(t) = t(at+b)e^{-2t}$. $x^*(t)$ vérifie (1) puisque s'en est une solution particulière. On a donc

 $(2at + b)e^{-2t} - 2t(at + b)e^{-2t} + 2t(at+b)e^{-2t} = 2te^{-2t}, \text{ soit en ordonnant}$

$$(t(2a-2)+b)e^{-2t}=0.$$
 D'où:

$$\begin{cases} 2a - 2 = 0 \\ b = 0 \end{cases}$$
 d'où $a = 1$, $b = 0$ et $x^*(t) = t^2 e^{-2t}$, d'où

$$x(t) = ke^{-2t} + t^2e^{-2t}$$
 avec $k \in \mathbb{R}$

Remarque: Dans ces deux exercices on ne peut pas déterminer les constantes k car aucune condition initiale n'est précisée.