Leçon 03 – Correction des ''Avez-vous compris?''

Avez-vous compris ? 3 : Démontrez la proposition 2 pour p :

Proposition 2: p et q sont des applications linéaires de \mathbf{E} et kerp = F_2 , kerq = F_1 , Imp = F_1 et Imq = F_2 . De plus pop = p (on note parfois p^2 au lieu de pop) , qoq = q (ou $q^2 = q$) et p + q = Id (fonction identité qui à v fait correspondre lui-même).

Solution

• F_1 et F_2 sont en somme directe et si $v = v_1 + v_2$ avec $v_1 \in F_1$ et $v_2 \in F_2$, $p(v) = v_1$.

De même si $w = w_1 + w_2$ avec $w_1 \in F_1$ et $w_2 \in F_2$, $p(w) = w_1$ et puisque v + w peut s'écrire $v + w = (v_1 + w_1) + (v_2 + w_2)$. F_1 et F_2 étant des sous-espaces vectoriels $(v_1 + w_1) \in F_1$ et $(v_2 + w_2) \in F_2$. La décomposition sur la somme directe étant unique on a donc $p(v + w) = v_1 + w_1 = p(v) + p(w)$.

D'autre part $\lambda v = \lambda v_1 + \lambda v_2$, F_1 et F_2 étant des sous-espaces vectoriels $\lambda v_1 \in F_1$ et $\lambda v_2 \in F_2$. La décomposition sur la somme directe étant unique on a donc $p(\lambda v) = \lambda v_1 = \lambda p(v)$.

p est bien une application linéaire.

- $v \in \text{kerp si et seulement si } p(v) = 0$, soit $v_1 = 0$ et $v = v_2 \in F_2$. D'où $\ker F = F_2$.
- D'autre part $p(v) = v_1 \in F_1$, donc $\underline{Imp \subset F_1}$. Et si $v_1 \in F_1$ $p(v_1) = v_1 \in Imp$ donc $\underline{F_1 \subset Imp}$. Et on a bien $\underline{Imp = F_1}$.
- De plus $v = v_1 + v_2$ et $p(v) = v_1$ et $q(v) = v_2$. On peut donc écrire Id(v) = v = p(v) + q(v), c'est-à-dire p + q = Id.