L3 économie appliquée Aunège

Cours de Mathématiques Université Paris XI O. BRANDIERE

Leçon 1: Les nombres complexes

Correction des "Exercez-vous"

Exercez-vous 7 : Calculer le module et l'argument de : $z_1 = 1+i$, $z_2 = 1+i\sqrt{3}$ et z_1z_2 . Déterminer la forme algébrique de z_1z_2 .

En déduire $\cos \frac{7\pi}{12}$ et $\sin \frac{7\pi}{12}$.

Solution :

 $|z_1| = \sqrt{2}$ et si $\theta_1 = \arg(z_1)$, $\cos\theta_1 = \frac{\sqrt{2}}{2}$ et $\sin\theta_1 = \frac{\sqrt{2}}{2}$ donc $\theta_1 = \frac{\pi}{4}$ convient (évident sur un dessin). Et $z_1 = \sqrt{2}$ e^{i π /4}.

 $|z_2| = 2$ et si $\theta_2 = \arg(z_2)$, $\cos\theta_2 = \frac{1}{2}$ et $\sin\theta_2 = \frac{\sqrt{3}}{2}$ d'où $\theta_2 = \frac{\pi}{3}$.

Donc $z_2 = 2e^{i\pi/3}$.

Et $z_1 z_2 = 2\sqrt{2} e^{i(\pi/3 + \pi/4)} = 2\sqrt{2} e^{7i\pi/12}$. $|z_1 z_2| = 2\sqrt{2} et arg(z_1 z_2) = \frac{7\pi}{12}$.

De plus $z_1 z_2 = (1+i)(1+i\sqrt{3}) = 1-\sqrt{3} + i(1+\sqrt{3})$.

D'après la forme exponentielle de $z_1 \\ z_2,$ on peut écrire :

 $2\sqrt{2}(\cos\frac{7\pi}{12} + i\sin\frac{7\pi}{12}) = 1-\sqrt{3} + i(1+\sqrt{3}).$

Donc $2\sqrt{2}\cos\frac{7\pi}{3} = 1-\sqrt{3}$ et $2\sqrt{2}\sin\frac{7\pi}{12} = 1+\sqrt{3}$.

On en déduit donc que : $\cos \frac{7\pi}{12} = \frac{1-\sqrt{3}}{2\sqrt{2}} = \frac{\sqrt{2}-\sqrt{6}}{4}$ et $\sin \frac{7\pi}{12} = \frac{1+\sqrt{3}}{2\sqrt{2}} = \frac{\sqrt{2}+\sqrt{6}}{4}$.