Solution

1) Déterminons tout d'abord les valeurs propres de A2; elles sont racines du polynôme

caractéristique de
$$A_2$$
, $P(\lambda) = \begin{vmatrix} (3-\lambda) & 0 & -1 \\ 4 & (1-\lambda) & -2 \\ 2 & 0 & -\lambda \end{vmatrix} = (\lambda - 1)(-\lambda^2 + 3\lambda - 2)$,

 $P(\lambda) = -(\lambda - 1)^2(\lambda - 2)$. A₂ admet donc 2 valeurs propres $\lambda_1 = 1$ et $\lambda_2 = 2$. Et d'après le cours A_2 sera diagonalisable si on peut trouver une base de vecteurs propres de A_2 . Ici puisque λ_1 est d'ordre de multiplicité 2, A2 sera diagonalisable si on peut trouver 2 vecteurs propres indépendants associés à λ_1 .

Vecteurs propres associés à λ_1 :

Si
$$V = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 sont les coordonnées de ces vecteurs dans la base de départ :
$$\begin{cases} 3x - z = x \\ 4x + y - 2z = y \text{ soit } z = 2x. \text{ Donc } V_1 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} \text{ et } V_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \text{ sont deux vecteurs indépendants}$$

associés à λ_1 et A_2 est diagonalisable.

On peut montrer que
$$A_2 = P D P^{-1}$$
 avec $P = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 0 & 1 \\ 1 & 2 & 0 \end{pmatrix}$, $D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ et

$$P^{-1} = \begin{pmatrix} 2 & 0 & -1 \\ -1 & 0 & 1 \\ -4 & 1 & 2 \end{pmatrix}$$

2) Le polynôme caractéristique de A₃ est

$$P(\lambda) = \begin{vmatrix} (-1-\lambda) & 1 & 1 \\ 4 & (1-\lambda) & -6 \\ 2 & 0 & 4-\lambda \end{vmatrix} = -\lambda^3 + 4\lambda^2 - 5\lambda + 2 = -(\lambda - 1)^2(\lambda - 2). \text{ A}_3 \text{ admet donc une valeur}$$

propre double $\lambda_1 = 1$ et une valeur propre simple $\lambda_2 = 2$.

Comme dans le cas précédent, A₃ sera diagonalisable si et seulement si il existe deux vecteurs propres indépendants associés à λ_1 .

Vecteurs propres associés à λ_1 :

Si $V = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ sont les coordonnées de ces vecteurs dans la base de départ :

$$\begin{cases} -x+y+z=x\\ 4x+y-2z=y\\ -6x+2y+4z=z \end{cases} \text{ soit } \begin{cases} x=2z\\ y=0 \end{cases}. \text{ Tous les vecteurs propres associés à λ_1 ont, dans la base}$$

de départ, des coordonnées de la forme $x \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} (x \neq 0)$. Ils sont tous proportionnels et il n'y en a pas deux indépendants. A₃ n'est pas diagonalisable.

Prolongeons l'exercice mais cette partie est plus difficile et n'est pas du niveau de l'examen. Par contre il faudrait être capable de suivre ces calculs.

Soit f l'application linéaire ayant pour matrice A3 dans la base de départ.

Les calculs dans la base de départ montrent que v_2 de matrice $V_2 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ est vecteur propre

associé à $\lambda_2 = 2$. Or $V_1 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$ est la matrice des coordonnées d'un vecteur propre v_1 associé à

 $\lambda_1.$ Si v_3 est tel que $\{v_1;\,v_2\,;\,v_3\}$ soit une base (on peut par exemple choisir v_3 de

coordonnées $V_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$; dans cette base, f a pour matrice triangulaire $T = \begin{pmatrix} 1 & 0 & a \\ 0 & 2 & b \\ 0 & 0 & c \end{pmatrix}$, où

a
b
sont les coordonnées de f(v₃) dans

 $\{v_1, v_2, v_3\}$. Les calculs donnent : $f(v_3)$ a pour matrice dans la base de départ

$$\begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix} = a \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + b \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} + c \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}. D'où a = 2, b = -1 \text{ et } c = 1 \text{ et}$$

 $A_3 = P T P^{-1}$ avec $P = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 2 & 1 & 1 \end{pmatrix}$ et $T = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{pmatrix}$. On dit qu'on a trigonalisé (ou

triangularisé) A3 (ou f).