Leçon 02 – Correction des 'Exercez-vous'

Exercez vous 7

Les fonctions suivantes sont-elles homogènes ? Si oui, déterminer leur degré d'homogénéité :

1) Soit
$$f: (x,y) \to x^2 - xy + y^2$$
; 2) $f: (x,y) \to \frac{x}{y}$; 3) $f: (x,y) \to \sqrt{x+y}$;

2)
$$f:(x,y) \to \frac{x}{y}$$
;

3)f:(x,y)
$$\rightarrow \sqrt{x+y}$$

4)
$$f:(x, y, z) \to x \ln \frac{z}{y}$$

4)
$$f:(x, y, z) \to x \ln \frac{z}{y}$$
; 5) $f:(x,y) \in \mathbb{R}^{+*} \times \mathbb{R}^{+*} \to 3x^{\alpha}y^{\beta} \ (\alpha \in \mathbb{R} \text{ et } \beta \in \mathbb{R}).$

Solution

1) $f(ax,ay) = (ax)^2 - ax.ay + (ay)^2 = a^2f(x,y)$. f est donc homogène de degré 2.

C'est un cas particulier des polynômes homogènes de degré n : $P_n(x,y) = a_n x^n + a_{n-1} x^{n-1} y + a_{n-2} x^{n-2} y^2 \dots + a_1 x y^{n-1} + a_0 y^n$ (chaque monôme est de degré total n)

- 2) f: $(x,y) \rightarrow \frac{x}{y}$ est homogène de degré 0 puisque $\frac{ax}{ay} = a^0 \frac{x}{y}$ (a \neq 0)
- 3) f est définie sur $\mathbf{D} = \{(x,y) \mid x+y \ge 0\}$. $\forall a \in \mathbf{IR}^+$ et $\forall (x,y) \in \mathbf{D}$: $f(ax,ay) = \sqrt{ax+ay} = \sqrt{a}\sqrt{x+y}$ ainsi f est homogène de degré $\frac{1}{2}$.
- 4) f est définie sur $\mathbf{D} = \{(xy,z) \mid zy > 0\}$. $\forall a \in \mathbf{IR}^*$ et $\forall (x,y,z) \in \mathbf{D}$: $f(ax,ay,az) = ax \ln \frac{az}{ay} = ax \ln \frac{z}{y}$ et f est homogène de degré 1.
- 5) $\forall a \in \mathbf{IR}^{+*} : f(ax,ay) = 3(ax)^{\alpha}(ay)^{\beta} = 3a^{\alpha+\beta}x^{\alpha}y^{\beta}$. Et f est homogène de degré $\alpha+\beta$.