Leçon 01 - Correction des "Exercez-vous"

Exercez-vous 2

- 1) Soit (u_n) définie par $\begin{cases} u_o = 1 \\ u_{n+1} = \sqrt{12 + u_n} \end{cases}$, montrez que u est bien définie sur N et calculez u_1 et u₄.
- 2) Soit (u_n) définie par $\begin{cases} u_0 = 1, u_1 = 1 \\ u_{n+2} = u_n + u_{n+1} \end{cases}$, donnez l'ensemble de définition de u et calculez u_2 et u_8 .

Solution

1) Pour que u_n soit défini il faut que l'expression figurant sous le radical soit positive, elle le sera dès que u_{n-1} sera positif par exemple. Or u₀ est positif et de proche en proche

$$\begin{array}{l} u_{n\text{--}1} \, l\text{'est, } u_n \, \text{est donc bien d\'efini.} \, u_1 = \sqrt{13} \, \, , \, u_2 = \sqrt{12 + \sqrt{13}} \, \, , \\ u_3 = \sqrt{12 + \sqrt{12 + \sqrt{13}}} \, \, \text{et } u_4 = \sqrt{12 + \sqrt{12 + \sqrt{12} + \sqrt{13}}} \, \, . \end{array}$$

2) u est définie sur **N** et $u_2 = 2$, $u_3 = 3$, $u_4 = 5$, $u_5 = 8$, $u_6 = 13$, $u_7 = 21$ et $u_8 = 34$.