Leçon 08 - Correction des 'Exercez-vous'

Exercez-vous 6:

Indiquer sur quels ensembles les fonctions suivantes sont différentiables et donner leurs différentielles

a)
$$f_1$$
: $(x,y) \in \mathbb{R} \times \mathbb{R}_+^* \mapsto x \ln(y)$.

$$b) \; f_2 \cdot (x,y) \; \in {\rm I\!R} \times {\rm I\!R}^* \mapsto \frac{x}{v^2} \, + y$$

c)
$$f_{3:}(x,y) \in \mathbb{R} \times \mathbb{R}_{+}^{*} \mapsto y^{x} = e^{x \ln(y)}$$

Solution

Ces 3 fonctions admettent des dérivées partielles continues sur tout leur ensemble de définition, donc elles y sont différentiables.

Pour tout (x,y) de
$$IR \times IR_+^*$$
 $\frac{\partial f_1}{\partial x} = \ln(y)$ et $\frac{\partial f_1}{\partial y} = x/y$, d'où $\mathbf{df_1} = \ln(y) \, \mathbf{dx} + \frac{\mathbf{x}}{\mathbf{y}} \, \mathbf{dy}$

Pour tout (x,y) de IR×IR*
$$\frac{\partial f_2}{\partial x} = y^{-2}$$
 et $\frac{\partial f_2}{\partial y} = -2xy^{-3} + 1$, d'où

$$df_2 = y^{-2} dx + (1 - 2x y^{-3}) dy$$

Pour tout
$$(x,y)$$
 de $IR \times IR_+ * \frac{\partial f_3}{\partial x} = ln(y) e^{x ln(y)}$ et $\frac{\partial f_3}{\partial y} = \frac{1}{y} e^{x ln(y)} = y^{x-1} d$ 'où

$$\mathbf{df_3} = \mathbf{y} \times \mathbf{ln}(\mathbf{y}) \mathbf{dx} + \mathbf{y}^{\mathbf{x}-1} \mathbf{dy}$$