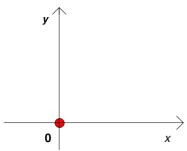
Leçon 08 - Correction des "Exercez-vous"

Exercez vous 1:

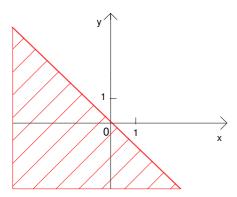
- a) $\mathbb{R}^* \times \mathbb{R}^*$ est-il égal à $\mathbb{R}^2 \{0, 0\}$?
- b) Déterminer et construire sommairement les ensembles sur lesquels on peut définir les expressions suivantes:

b1)
$$\frac{1}{x^2 + y^2}$$

b2)
$$\ln(x+y)$$
 b3) $\frac{x}{y}$

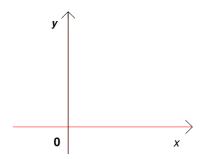

$$\frac{x}{v}$$

b5)
$$\sqrt{xy}$$
 b6)

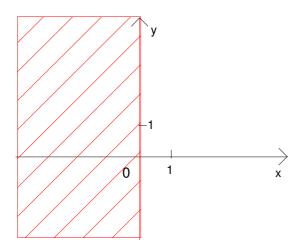

2xy + 3x + y

Solution

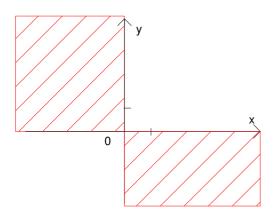
- a) Non, $\mathbb{R}^* \times \mathbb{R}^*$ est formé des couples de nombres (x,y) pour lesquels ni x ni y ne valent 0, alors que \mathbb{R}^2 -{0, 0) est formé des couples de nombres (x,y) pour lesquels x \neq 0 ou y \neq 0. Graphiquement, IR*× IR* est représenté par tout le plan sauf les deux axes, alors que IR² -{0, 0} est représenté par tout le plan sauf le point origine.
- **b1**) La fonction est définie sur IR² -{0, 0}, dont la représentation graphique est : tout le plan sauf le point (0,0)

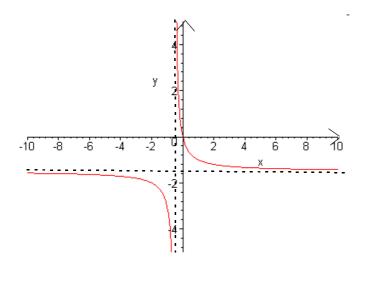


- **b2**) La fonction est définie sur l'ensemble D des (x,y) tels que x+y>0.
- $D = \{(x,y) \in \mathbb{R}^2 ; x+y>0\}$ Sa représentation est le demi-plan non hachuré, borné par la droite d'équation y = -x.



b3) La fonction $(x,y) \mapsto \frac{x}{y}$ est définie sur $D = \mathbb{R} \times \mathbb{R}^* = \{ (x,y) \in \mathbb{R}^2 : y \neq 0 \}$.


Graphiquement D est représenté par le plan privé de l'axe des abscisses.


b4) $x^y = \exp(y \ln(x))$ est définie sur $D = IR_+^* \times IR = \{(x,y) \in IR^2 ; x > 0\}$. Graphiquement D est représenté par le demi-plan non hachuré, bordé par l'axe des ordonnées

b 5) \sqrt{xy} est définie sur D = { $(x,y) \in \mathbb{R}^2$; $(x \le 0 \text{ et } y \le 0) \text{ ou } (x \ge 0 \text{ et } y \ge 0)$ }. D est représenté par l'ensemble non hachuré

b 6) l'expression $\frac{1}{2xy + 3x + y}$ est définie sur l'ensemble des (x,y) tels que $2xy + 3x + y \neq 0$. Or : $2xy + 3x + y = 0 \Leftrightarrow y(2x + 1) = -3x$ d'où $2xy + 3x + y = 0 \Leftrightarrow 2x + 1 \neq 0$ et $y = \frac{-3x}{2x + 1}$. D est donc représenté par le plan, privé de l'hyperbole d'équation $y = \frac{-3x}{2x + 1}$. Pour la construction de cette hyperbole, voir la leçon 2: fonctions usuelles.

