Leçon 06 – Correction des exercices

Exercice 1. Soit $f(x) = \ln(2x + 3)$ pour $x \ge -1$.

- 1) Donner une majoration de f'(x) et en déduire une majoration dre ln(2x + 3) par un polynôme de degré 1 sur [-1; $+\infty$ [.
- 2) Donner alors une majoration de ln3.

Solution

1) f et définie et dérivable sur [-1; + ∞ [et f'(x) = $\frac{2}{2x + 3}$.

Sur
$$[-1; +\infty[, 2x + 3 \ge 1, 0 \le \frac{1}{2x + 3} \le 1 \text{ et } 0 \le f'(x) \le 2.$$

D'après la première conséquence du cours,

Pour tout
$$x \in [-1; +\infty[0 \le f(x) - f(-1) \le 2(x+1)]$$
 et puisque $f(-1) = 0$
 $0 \le f(x) \le 2x + 2$.

2) Pour x = 0, la dernière inégalité donne : $\ln 3 \le 2$.

Exercice 2. Soit $f(x) = \sqrt{3x + 4}$ pour $x \ge 0$.

1) Montrer que pour tout x et y positifs :

$$|f(x) - f(y)| \le \frac{3}{4} |x - y|$$

2) * Montrer que pour tout x > 0,

$$|f(x) - 4| \le \frac{3}{4} |x - 4|.$$

Solution

1) f est définie et dérivable sur [0 ; +\infty[et f'(x) = $\frac{3}{2\sqrt{3x+4}}$.

Si
$$x \in [0; +\infty[, 3x + 4 \ge 4, \sqrt{3x + 4} \ge 2, \frac{1}{\sqrt{3x + 4}} \le \frac{1}{2} \text{ et } 0 \le f'(x) \le \frac{3}{4}.$$

D'après la deuxième conséquence du cours, on en déduit que pour tous x et y strictement positifs, $|f(x) - f(y)| \le \frac{3}{4}|x - y|$. On remarque que l'inégalité reste vraie si x ou y ou les deux sont nuls.

2) En remarquant que f(4) = 4 et en utilisant la dernière inégalité à x = 4, on obtient

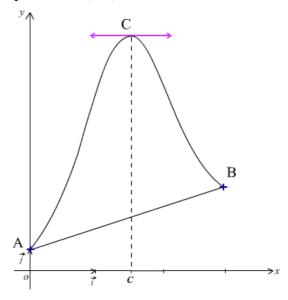
$$|f(x) - 4| \le \frac{3}{4} |x - 4|.$$

Exercice 3. Soit $f(x) = \exp(-x^2 + 3x) + x \sup[0; 3]$. Montrer que le théorème des accroissements finis s'applique et déterminer c graphiquement puis par le calcul.

Solution

f est définie, continue et dérivable sur [0; 3] et $f'(x) = (-2x + 3) \exp(-x^2 + 3x) + 1$. En appliquant le théorème des accroissement finis on obtient :

Graphiquement : Il existe un point C(c; f(c)) de C(f) situé entre A(0; 1) et B(3; 4), où la tangente à C(f) est parallèle à (AB).



Graphiquement on lit $c \approx 1.5$

Par le calcul : f(3) - f(0) = f'(c)(3-0). Or f(0) = 1 et f(3) = 4. c vérifie donc $(-2c+3)\exp(-c^2+3c)+1=1$, soit $(-2c+3)\exp(-c^2+3c)=0$ et (-2c+3)=0 puisqu'une exponentielle est non nulle, donc $c=\frac{3}{2}$, ce qui confirme la lecture sur le dessin.

Exercice 4.* Soient $g: x \to \frac{1}{x^2} \exp(\frac{1}{x})$ et $f: x \to \frac{1}{2} \exp(\frac{1}{x}) + \frac{1}{2} x$.

- 1) Montrer que g est une bijection de [1 ; +∞[dans un intervalle I que l'on déterminera.
- 2) Montrer que pour tous x et y de $[1; +\infty[$:

$$|f(x) - f(y)| \le \frac{e - 1}{2} |x - y|.$$

Solution

1) Si $g(x) = \frac{1}{x^2} e^{1/x}$, g est définie et dérivable sur $[1 ; + \infty[$ et $g'(x) = -\frac{2}{x^3} e^{1/x} - \frac{1}{x^4} e^{1/x}$. Sur $[1 ; + \infty[$, g'(x) < 0 et g est une bijection décroissante de $[1 ; + \infty[$ dans I =]0 ; e] (en effet f(1) = e et $\lim_{x \to +\infty} g(x) = 0$ puisque $\lim_{x \to +\infty} \frac{1}{x} = \lim_{x \to +\infty} \frac{1}{x^2} = 0$ et $\lim_{x \to +\infty} e^{1/x} = 1$).

2

2) f est définie et dérivable sur [1 ;+ ∞ [et f'(x) = $-\frac{1}{2x^2}$ $e^{1/x} + \frac{1}{2} = -\frac{1}{3}g(x) + \frac{1}{2}$.

Or sur
$$[1; +\infty[0 \le g(x) \le e, donc -\frac{e}{2} \le -\frac{1}{2}g(x) \le 0 \text{ et } \frac{1-e}{2} \le f'(x) \le \frac{1}{2}.$$

Or $\frac{1-e}{2} \approx -0.86$, donc $|f(x)| \le \frac{e-1}{2}$ et en appliquant la deuxième conséquence du théorème des accroissements finis,

$$|f(x) - f(y)| \le \frac{e-1}{2} |x - y|.$$

Exercice 5. Déterminer les D.L. au voisinage de 0 et à l'ordre 4 des fonctions suivantes :

1)
$$f: x \rightarrow \sqrt{1-x^2}$$

2)
$$f: x \to \ln(\frac{1}{2} + x)$$

2) f:
$$x \to \ln(\frac{1}{2} + x)$$
 3) f: $x \to \exp(x^2 + x + 1)$

4)
$$f: x \to 2^{x+1}$$

Solution

1) Posons $u = -x^2$. Si x est voisin de 0 u aussi et on a d'après le cours

$$(1+u)^{1/2} = 1 + \frac{1}{2} u - \frac{1}{8} u^2 + u^2 \varepsilon(u)$$
 avec $\lim_{u \to 0} \varepsilon(u) = 0$. En remplaçant u par $-x^2$, on obtient :

$$\sqrt{1-x^2} = 1 - \frac{1}{2}x^2 - \frac{1}{8}x^4 + x^4 \varepsilon(x)$$
 avec $\lim_{x\to 0} \varepsilon(x) = 0$.

2)
$$\ln(\frac{1}{2} + x) = \ln(\frac{1}{2}(1 + 2x)) = \ln\frac{1}{2} + \ln(1 + 2x)$$
. Or $u = 2x$ est voisin de 0 puisque x l'est et en remplaçant x par u dans le D.L. de l'encadré du cours :

ln(1 + u) =. Et en remplaçant u par 2x :

$$ln(1 + 2x) = 2x - 2x^2 + \frac{8}{3}x^3 - 4x^4 + x^4 \varepsilon(x)$$
 avec $\lim_{x \to 0} \varepsilon(x) = 0$. Et

$$\ln(\frac{1}{2} + x) = -\ln 2 + 2x - 2x^2 + \frac{8}{3}x^3 - 4x^4 + x^4 \varepsilon(x).$$

3) $\exp(x^2 + x + 1) = \exp(x^2 + x)$. Et si on pose $u = x^2 + x$, u est voisin de 0 puisque x l'est et en remplaçant x par u dans le D.L. de l'encadré du cours :

$$e^{u} = 1 + u + \frac{u^{2}}{2} + \frac{u^{3}}{6} + \frac{u^{4}}{24} + u^{4} \epsilon(u)$$
 avec $\lim_{u \to 0} \epsilon(u) = 0$. Et en remplaçant u par $x^{2} + x$

$$\exp(x^2 + x) = 1 + (x^2 + x) + \frac{(x^2 + x)^2}{2} + \frac{(x^2 + x)^3}{6} + \frac{(x^2 + x)^4}{24} + x^4 \varepsilon(x) \text{ avec } \lim_{x \to 0} \varepsilon(x) = 0.$$

En ne gardant que les termes de degré inférieur ou égal à 4 dans la partie régulière, les autres rentrant dans le reste :

$$\exp(x^2 + x) = 1 + x + \frac{3x^2}{2} + \frac{7x^3}{6} + \frac{25x^4}{24} + x^4 \varepsilon(x)$$
 et

$$\exp(x^2 + x + 1) = e(1 + x + \frac{3x^2}{2} + \frac{7x^3}{6} + \frac{25x^4}{24}) + x^4 \varepsilon(x).$$

4) $2^{x+1} = 2 \times 2^x = 2e^{x \ln 2}$. Posons $u = x \ln 2$, u est voisin de 0 puisque x l'est et en remplaçant x

$$e^{u} = 1 + u + \frac{u^{2}}{2} + \frac{u^{3}}{6} + \frac{u^{4}}{24} + u^{4} \varepsilon(u)$$
 avec $\lim_{u \to 0} \varepsilon(u) = 0$. Et en remplaçant u par xln2

$$e^{u} = 1 + u + \frac{u^{2}}{2} + \frac{u^{3}}{6} + \frac{u^{4}}{24} + u^{4} \epsilon(u) \text{ avec } \lim_{u \to 0} \epsilon(u) = 0. \text{ Et en remplaçant } u \text{ par } x \ln 2$$

$$2^{x} = e^{x \ln 2} = 1 + x \ln 2 + \frac{(x \ln 2)^{2}}{2} + \frac{(x \ln 2)^{3}}{6} + \frac{(x \ln 2)^{4}}{24} + x^{4} \epsilon(x) \text{ avec } \lim_{x \to 0} \epsilon(x) = 0, \text{ et}$$

$$2^{x+1} = 2 \times 2^x = 2 + (2\ln 2)x + (\ln 2)^2 x^2 + \frac{(\ln 2)^3}{3} x^3 + \frac{(\ln 2)^4}{12} x^4 + x^4 \varepsilon(x).$$

Exercice 6. Donner un D.L. à l'ordre 2 et au voisinage de 0 de $x \rightarrow \ln(1 + e^x)$.

Solution

Pour x voisin de 0, $e^x = 1 + x + \frac{x^2}{2} + x^2 \varepsilon(x)$ avec $\lim_{x \to 0} \varepsilon(x) = 0$.

 $\ln(1 + e^x) = \ln(2 + x + \frac{x^2}{2} + x^2 \varepsilon(x))$. Posons $u = x + \frac{x^2}{2} + x^2 \varepsilon(x)$, si x est voisin de 0, u aussi

et $ln(2 + u) = ln(2(1 + \frac{u}{2})) = ln2 + ln(1 + \frac{u}{2})$ et puisque $\frac{u}{2}$ est voisin de 0, on peut remplacer x

par $\frac{u}{2}$ dans le D.L. du cours et

 $\ln(1+\frac{u}{2}) = \frac{u}{2} - \frac{u^2}{8} + u^2 \varepsilon(u)$ avec $\lim_{u\to 0} \varepsilon(u) = 0$. Et en remplaçant u par $= x + \frac{x^2}{2} + x^2 \varepsilon(x)$, on obtient :

$$\ln(1 + e^{x}) = \ln(2 + u) = \ln 2 + \frac{(x + \frac{x^{2}}{2} + x^{2} \varepsilon(x))}{2} - \frac{(x + \frac{x^{2}}{2} + x^{2} \varepsilon(x))^{2}}{8} + x^{2} \varepsilon(x) \text{ avec}$$

 $\lim_{x\to 0} \varepsilon(x) = 0$. On ne garde pour la partie régulière que les termes de degré inférieur ou égal à 2,

les autres rentrant dans le reste :

$$\ln(1 + e^{x}) = \ln 2 + \frac{x}{2} + \frac{x^{2}}{2} - \frac{x^{2}}{8} + x^{2} \varepsilon(x) = \ln 2 + \frac{x}{2} + \frac{3x^{2}}{8} + x^{2} \varepsilon(x).$$

Exercice 7.

- 1) Donner le D.L. à l'ordre 2 et au voisinage de 1 de g : $x \to 1 + (x 1)e^{x-1}$.
- 2) Donner un D.L. à l'ordre 2 et au voisinage de 1 de f : $x \rightarrow \ln(1 + (x-1)e^{x-1})$.
- 3) Soit h la fonction définie par $h(x) = \frac{f(x)}{x-1}$ et h(1) = 1. Montrer que h est continue et dérivable en 1.

Solution

1)Posons x = 1 + h. $g(x) = g(1 + h) = 1 + he^h$. Et puisque h est voisin de 0 lorsque x est voisin de 1, $e^h = 1 + h + \frac{h^2}{2} + h^2 \epsilon(h)$ avec $\lim_{h \to 0} \epsilon(h) = 0$. Et

 $g(1 + h) = 1 + h + h^2 + \frac{h^3}{2} + h^3 \varepsilon(h)$ (le terme d'ordre 3 rentre dans le reste d'ordre 2)

$$g(1 + h) = 1 + h + h^2 + h^2 \varepsilon(h)$$
.

g(1+1) - 1 + 11 + 11 + 11 = (1).On a aussi : $g(x) = 1 + (x - 1) + (x - 1)^2 + (x - 1)^2 \epsilon(x-1)$ avec $\lim_{x \to 1} \epsilon(x-1) = 0$.

2) Utilisons toujours le même changement de variable : $f(1 + h) = \ln(1 + he^h) = \ln(g(1+h))$ et en utilisant le résultat précédent : $f(1 + h) = \ln(1 + h + h^2 + h^2 \epsilon(h))$.

Posons $u = h + h^2 + h^2 \epsilon(h)$, u est voisin de 0 puisque h l'est et en remplaçant x par u dans le D.L. du cours :

 $\ln(1+u) = u - \frac{u^2}{2} + u^2 \ \epsilon(u) \ \text{avec } \lim_{u \to 0} \epsilon(u) = 0. \ \text{Puis en remplaçant } u \ \text{par } h + h^2 + h^2 \epsilon(h), \text{ on}$ obtient $f(1+h) = (h+h^2+h^2\epsilon(h)) - \frac{(h+h^2+h^2\epsilon(h))^2}{2} + h^2 \epsilon(h) \ \text{avec } \lim_{h \to 0} \epsilon(h) = 0. \ \text{Et en ne}$ gardant que les termes de degré inférieur ou égal à 2, les autres rentrant dans le reste d'ordre $2 : f(1+h) = h + \frac{h^2}{2} + h^2 \epsilon(h). \ \text{Soit } f(x) = (x-1) + \frac{(x-1)^2}{2} + (x-1)^2 \ \epsilon(x-1) \ \text{avec } \lim_{x \to 1} \epsilon(x-1) = 0.$

3) h est continue en 1 si et seulement si $\lim h(x) = h(1)$.

Or
$$\lim_{x \to 1} h(x) = \lim_{x \to 1} \frac{f(x)}{x - 1} = \lim_{x \to 1} ((x - 1) + \frac{(x - 1)^2}{2} + (x - 1)^2 \varepsilon(x - 1))$$

 $\lim_{x \to 1} h(x) == \lim_{x \to 1} (1 + \frac{(x - 1)}{2} + (x - 1) \varepsilon(x - 1)) = 1 = h(1)$. Et h est bien continue en 1.

h est dérivable en 1 si et seulement si $\lim_{x\to 1} \frac{h(x) - h(1)}{x - 1}$ existe et est finie.

Or
$$\lim_{x \to 1} \frac{h(x) - h(1)}{x - 1} = \lim_{x \to 1} \frac{\left(1 + \frac{(x - 1)}{2} + (x - 1) \varepsilon(x - 1)\right) - 1}{x - 1} = \lim_{x \to 1} \left(\frac{1}{2} + \varepsilon(x - 1)\right) = \frac{1}{2}$$
.

h est donc bien dérivable en 1 et h'(1) = $\frac{1}{2}$.

Exercice 8. Calculer à l'aide d'un D.L. adequat, $\lim_{x\to 0} \frac{e^X - x - 1}{x^2}$.

Solution

D'après le D.L. du cours, $e^x = 1 + x + \frac{x^2}{2} + x^2 \varepsilon(x)$ avec $\lim_{x \to 0} \varepsilon(x) = 0$.

D'après le D.L. du cours,
$$e^x = 1 + x + \frac{1}{2} + x^2 \varepsilon(x)$$
 avec $\lim_{x \to 0} \varepsilon(x) = 0$.

Donc $\lim_{x \to 0} \frac{e^x - x - 1}{x^2} = \lim_{x \to 0} \frac{1 + x + \frac{x^2}{2} + x^2 \varepsilon(x) - x - 1}{x^2} = \lim_{x \to 0} \frac{\frac{x^2}{2} + x^2 \varepsilon(x)}{x^2} = \lim_{x \to 0} \frac{1}{2} + \varepsilon(x)$ Et $\lim_{x \to 0} \frac{e^x - x - 1}{x^2} = \frac{1}{2}$.

Exercice 9.

- 1) Déterminer le D.L. à l'ordre 2 et au vosinage de 1 de $x \rightarrow x \ln x$.
- 2) En déduire $\lim_{x \to 1} \frac{x \ln x}{x^2 1}$.

Solution

1) Posons x = 1 + h (x est voisin de 1, donc h est voisin de 0). D'après le cours puisque h est voisin de 0, $\ln(1 + h) = h - \frac{h^2}{2} + h^2 \varepsilon(h)$ avec $\lim_{h \to 0} \varepsilon(h) = 0$. Et

$$x \ln x = (1+h) \ln(1+h) = (1+h)(h - \frac{h^2}{2} + h^2 \varepsilon(h)) = h + \frac{h^2}{2} + h^2 \varepsilon(h)$$

ou xlnx =
$$(x - 1) + \frac{(x - 1)^2}{2} + (x - 1)^2 \varepsilon(x - 1)$$
 avec $\lim_{x \to 1} \varepsilon(x - 1) = 0$.

2)
$$\lim_{x \to 1} \frac{x \ln x}{x^2 - 1} = \lim_{x \to 1} \frac{(x - 1) + \frac{(x - 1)^2}{2} + (x - 1)^2 \varepsilon (x - 1)}{x^2 - 1}$$

$$\lim_{x \to 1} \frac{x \ln x}{x^2 - 1} = \lim_{x \to 1} \frac{1 + \frac{(x - 1)}{2} + (x - 1)\varepsilon(x - 1)}{x + 1} = \frac{1}{2} \ .$$

Exercice 10. Soit $f: x \to e^{1/x} \sqrt{x^2 - 1}$.

- 1) Déterminer un D.L. d'ordre 3 de $\frac{f(x)}{x}$ au voisinage de $+\infty$.
- 2) En déduire que C(f) admet une asymptote oblique quand $x \to +\infty$.
- 3) Etudier la position de C(f) par rapport à cette asymptote.
- 4) Faire de même pour $x \to -\infty$, sans recommencer tous les calculs.

Solution

1) Posons $h = \frac{1}{x}$ (si x est voisin de $+\infty$, h est voisin de 0^+).

$$e^{1/x} \sqrt{x^2 - 1} \ = e^h \sqrt{\frac{1 - h^2}{h^2}} \ = \frac{e^h}{h} \sqrt{1 - h^2} \ (car \ h > 0).$$

$$\frac{f(x)}{x} = hf(\frac{1}{h}) = e^h \sqrt{1 - h^2}$$
. Or puisque h est voisin de 0

$$\begin{split} e^h &= 1 + h + \frac{h^2}{2} + \frac{h^3}{6} + h^3 \epsilon(h) \text{ avec } \lim_{h \to 0} \epsilon(h) = 0 \text{ et } \sqrt{1 - h^2} = (1 - h^2)^{1/2} \text{ et en remplaçant x par} \\ h^2 &= 1 + h + \frac{h^2}{2} + \frac{h^3}{8} + h^4 \epsilon(h) \text{ avec } \lim_{h \to 0} \epsilon(h) = 0. \text{ D'où } e^h \sqrt{1 - h^2} = (1 + h + \frac{h^2}{2} + \frac{h^3}{6} + h^3 \epsilon(h)) (1 - \frac{h^2}{2} + \frac{h^4}{8} + h^4 \epsilon(h)), \text{ et en ne gardant que les termes de degré inférieur ou égaux à 3 dans la partie principale, on obtient le D.L. d'ordre 3 <math>e^h \sqrt{1 - h^2} = 1 + h + \frac{h^3}{6} + h^3 \epsilon(h). \text{ Et} \end{split}$$

$$\frac{f(x)}{x} = 1 + \frac{1}{x} + \frac{1}{6x^3} + \frac{1}{x^3} \epsilon(\frac{1}{x}) \text{ avec } \lim_{x \to +\infty} \epsilon(\frac{1}{x}) = 0. \text{ D'où}$$

$$f(x) = x + 1 + \frac{1}{6x^2} + \frac{1}{x^2} \epsilon(\frac{1}{x}).$$

- 2) On en déduit que $\lim_{x \to +\infty} (f(x) (x+1)) = \lim_{x \to +\infty} (\frac{1}{6x^2} + \frac{1}{x^2} \epsilon(\frac{1}{x})) = 0$. Et donc que la droite d'équation y = x + 1 est asymptote oblique à C(f) quand x tend vers $+\infty$.
- 3) $f(x) (x + 1) = \frac{1}{6x^2} + \frac{1}{x^2} \epsilon(\frac{1}{x}) \ge 0$ au voisinage de $+\infty$ puisqu'alors $\frac{1}{x^2} \epsilon(\frac{1}{x})$ est négligeable devant $\frac{1}{6x^2}$. C(f) est donc au dessus de l'asymptote quand x tend vers $+\infty$.
- 4) Quand x tend vers -∞, le calcul est très semblable, mais h tend vers 0 et

$$\sqrt{\frac{1-h^2}{h^2}} = -h\sqrt{1-h^2} \cdot \text{Et} \, \frac{f(x)}{x} = hf(\frac{1}{h}) = -e^h\sqrt{1-h^2} \cdot \text{Ensuite les calculs reste valables et} \, \frac{f(x)}{x} = -(1+\frac{1}{x}) + \frac{1}{6x^3} + \frac{1}{x^3} \cdot \epsilon(\frac{1}{x}) = -(1+\frac{1}{x}) + \frac{1}{6x^3} + \frac{1}{x^3} \cdot \epsilon(\frac{1}{x}) = 0$$

 $f(x) = -x - 1 - \frac{1}{6x^2} - \frac{1}{x^2} \epsilon(\frac{1}{x})$. Ainsi C(f) admet la droite d'équation y = -x - 1 comme asymptote quant x tend vers $-\infty$ et la courbe est en dessous de l'asymptote.

En effet
$$\lim_{x \to +\infty} (f(x) - (-x - 1)) = \lim_{x \to +\infty} (-\frac{1}{6x^2} - \frac{1}{x^2} \epsilon(\frac{1}{x})) = 0$$
 et

$$f(x) - (-x - 1) = -\frac{1}{6x^2} - \frac{1}{x^2} ε(\frac{1}{x}) ≤ 0$$
 au voisinage de -∞.

Exercice 11. Soit $f: x \rightarrow \sqrt[3]{4x^3 - 12x}$ pour x > 3.

- 1) Déterminer un D.L. d'ordre 2 de $\frac{f(x)}{x}$ au voisinage de $+\infty$.
- 2) En déduire que C(f) admet une asymptote oblique quand $x \to +\infty$.
- 3) Etudier la position de C(f) par rapport à cette asymptote.

Solution

1)
$$\sqrt[3]{4x^3 - 12x} = \sqrt[3]{4x^3(1 - \frac{3}{x^2})} = \sqrt[3]{4x^3} \sqrt[3]{1 - \frac{3}{x^2}} = \sqrt[3]{4} x(1 - \frac{3}{x^2})^{1/3}$$
, donc

$$\frac{f(x)}{x} = \sqrt[3]{4} \left(1 - \frac{3}{x^2}\right)^{1/3}$$
. Posons $h = \frac{1}{x}$ (h est voisin de 0 puisque x tend vers $+\infty$) et

$$\frac{f(x)}{x} = hf(\frac{1}{h}) = \sqrt[3]{4} (1 - 3h^2)^{1/3}.$$
 En remplaçant x par -3h² et m par $\frac{1}{3}$ dans le 2ème D.L. l'encadré du cours, on obtient $(1 - 3h^2)^{1/3} = 1 - h^2 + h^2 \varepsilon(h)$ avec $\lim_{h \to 0} \varepsilon(h) = 0$. Et

$$\frac{f(x)}{x} = hf(\frac{1}{h}) = \sqrt[3]{4} (1 - 3h^2)^{1/3} = \sqrt[3]{4} (1 - h^2 + h^2 \varepsilon(h)) = \sqrt[3]{4} (1 - \frac{1}{x^2} + \frac{1}{x^2} \varepsilon(\frac{1}{x}))$$
 avec

$$\lim_{x\to +\infty} \epsilon(\frac{1}{x}).$$

2) On en déduit que $f(x) = \sqrt[3]{4} x - \frac{1}{x} + \frac{1}{x} \varepsilon(\frac{1}{x})$ et

 $\lim_{x \to +\infty} (f(x) - \sqrt[3]{4} x) = \lim_{x \to +\infty} (-\frac{1}{x} + \frac{1}{x} \epsilon(\frac{1}{x})) = 0. \text{ Donc } y = \sqrt[3]{4} x \text{ est asymptote oblique à C(f)}$ quand x tend vers $+\infty$.

3) $f(x) - \sqrt[3]{4} x = -\frac{1}{x} + \frac{1}{x} \epsilon(\frac{1}{x}) \le 0$ quand x tend vers $+\infty$ puisqu'alors $\frac{1}{x} \epsilon(\frac{1}{x})$ est négligeable devant $-\frac{1}{x}$. Et C(f) est en dessous de l'asymptote au voisinage de $+\infty$.

Exercice 12. Soit $f: x \to (x-2)\exp(\frac{x-1}{2x})$.

- 1) Déterminer un D.L. d'ordre 2 de $\frac{f(x)}{x}$ au voisinage de $+\infty$.
- 2) En déduire que C(f) admet une asymptote oblique quand $x \to +\infty$.
- 3) Etudier la position de C(f) par rapport à cette asymptote.

Solution

Posons $h = \frac{1}{x}$ ((h est voisin de 0 puisque x tend vers $+\infty$) alors

$$f(x) = (x - 2)exp(\frac{x - 1}{2x}) = f(\frac{1}{h}) = (\frac{1}{h} - 2)exp(\frac{1}{2} - \frac{h}{2}) et$$

 $\frac{f(x)}{x} = hf(\frac{1}{h}) = (1 - 2h)exp(\frac{1}{2} - \frac{h}{2}) = (1 - 2h)e^{1/2}e^{-h/2}$. En remplaçant dans le 4^{ème} D.L. de l'encadré du cours x par -h/2 qui tend bien vers 0, on obtient

$$e^{-h/2} = 1 - \frac{h}{2} + \frac{h^2}{8} + h^2 \varepsilon(h) \text{ avec } \lim_{h \to 0} \varepsilon(h) = 0.$$

D'où
$$hf(\frac{1}{h}) = \sqrt{e} (1 - 2h)(1 - \frac{h}{2} + \frac{h^2}{8} + h^2 \epsilon(h)) = \sqrt{e} (1 - \frac{5h}{2} + \frac{9h^2}{8} + h^2 \epsilon(h)) et$$

$$\frac{f(x)}{x} = \sqrt{e} \left(1 - \frac{5}{2x} + \frac{9}{8x^2} + \frac{1}{x^2} \varepsilon(\frac{1}{x}) \operatorname{avec} \lim_{x \to +\infty} \varepsilon(\frac{1}{x})\right).$$

2) On en déduit que
$$f(x) = \sqrt{e} (x - \frac{5}{2} + \frac{9}{8x} + \frac{1}{x} \epsilon(\frac{1}{x}))$$
 et

$$\lim_{x\to +\infty} (f(x)-(\sqrt{e}\ (x-\frac{5}{2}))) = \lim_{x\to +\infty} (\frac{9}{8x}\ +\frac{1}{x}\ \epsilon(\frac{1}{x})) = 0. \text{ Et } C(f) \text{ admet la droite d'équation}$$

 $y = \sqrt{e} (x - \frac{5}{2})$ comme asymptote quand x tend vers $+\infty$.

3) $f(x) - (\sqrt{e}(x - \frac{5}{2})) = \frac{9}{8x} + \frac{1}{x} \epsilon(\frac{1}{x}) \ge 0$ au voisinage de $+\infty$ puisque $\frac{1}{x} \epsilon(\frac{1}{x})$ est négligeable devant $\frac{9}{8x}$ sur ce voisinage. C(f) est au dessus de l'asymptote quand x tend vers $+\infty$.

Exercice 13.* Soit l'expression $f(x,y) = x \ln y - (y-1) \ln x - y + 1$. Etudier le signe de f(x,y) pour x et y voisins de 1.

Solution

Posons x = 1 + h et y = 1 + k. h et k sont voisins de 0 lorsque x et y sont voisins de 1.

f(x,y) = f(1+h,1+k) = (1+h)ln(1+k) - k.ln(1+h) - k. D'autre part d'après le cours :

$$\ln(1+k) = k - \frac{k^2}{2} + k^2 \varepsilon(k) \text{ avec } \lim_{k \to 0} \varepsilon(k) = 0.$$

$$ln(1 + h) = h - \frac{h^2}{2} + h^2 \varepsilon(h)$$
 avec $\lim_{h \to 0} \varepsilon(h) = 0$. Et

 $f(1+h,1+k) = (1+h)(k-\frac{k^2}{2}+k^2\varepsilon(k)) - k(h-\frac{h^2}{2}+h^2\varepsilon(h)) - k$. Et en ne gardant dans la partie principale que les termes d'ordre inférieur ou égaux à 2 pour obtenir un D.L. à l'ordre 2:

$$f(1+h,1+k) = -\frac{k^2}{2} + reste$$
 (le reste est négligeable devant $-\frac{k^2}{2}$).

Ainsi
$$f(x,y) = f(1+h,1+k) \approx -\frac{k^2}{2} \le 0$$
 pour x et y voisins de 1.

Indications

Exercice 11 : On remarquera que

$$\sqrt[3]{4x^3 - 12x} = \sqrt[3]{4x^3(1 - \frac{3}{x^2})} = \sqrt[3]{4x^3} \sqrt[3]{1 - \frac{3}{x^2}} = \sqrt[3]{4} x(1 - \frac{3}{x^2})^{1/3}.$$