

Technologie d'AssemBLage dEs ThermoplasTiques par lasEr

Micro-Contenus (MC)

Technologie d'AssemBLage dEs ThermoplasTiques par lasEr

Objectif pédagogique **final**

Acquérir les notions théoriques et expérimentales sur la tenue interfaciale des assemblages soudés des composites thermoplastiques

Module 1 (M1)

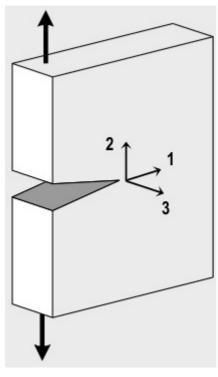
Introduction générale

MC8 : Analyse mécanique des assemblages soudés

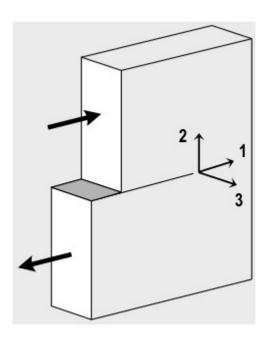
Evaluation Module 6 **Conclusion générale** Module 5 Relation entre tenue interfaciale et paramètres-procédés Module 4 Tenue mécanique des assemblages soudés Module 3 **Rupture des assemblages** Module 2

Module 1 Introduction générale

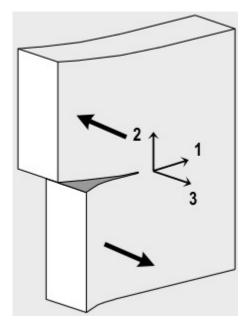
M1 – Introduction générale


A la fin de ce micro-contenu, vous serez capable de :					
□ Identifier les différents modes de rupture					
□ Identifier les types de rupture des assemblages thermoplastiques soudés					
□ Définir le taux de restitution d'énergie G					
□ Réaliser des essais pour l'évaluation de la tenue mécanique des assemblages thermoplastiques					
□ Calculer les grandeurs relatives aux tenues mécaniques des assemblages thermoplastiques					

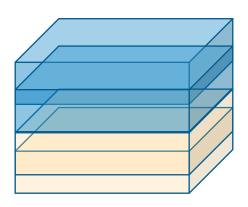
Module 2 (M2)

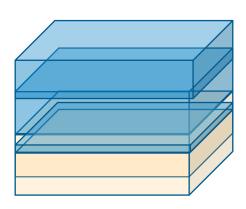

Rupture des assemblages soudés

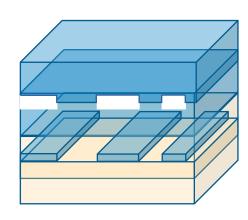
Les différents modes de ruptures


La rupture d'un assemblage est dépendante de la sollicitation qui lui est appliquée. **3 modes d'ouverture indépendants** existent en mécanique de la rupture :

Mode IMode d'ouverture

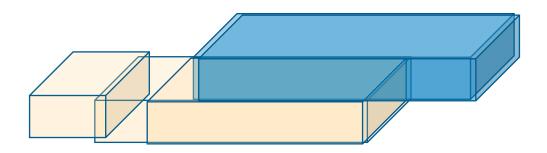

Mode IIMode de cisaillement plan

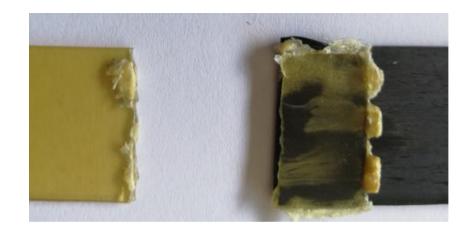



Mode IIIMode de cisaillement antiplan

La phénoménologie associée à la rupture des assemblages

La rupture d'un assemblage thermoplastique ou composite à matrice thermoplastique peut se faire selon 3 modes :

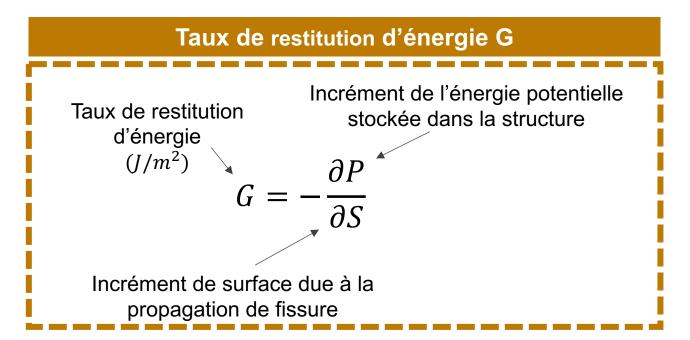



Rupture à l'interface Absence du substrat supérieur sur le faciès du substrat inférieur

Rupture « cohésive » dans le substrat « parallèlement » à la surface assemblée

Rupture mixte
Combinaison des 2 modes

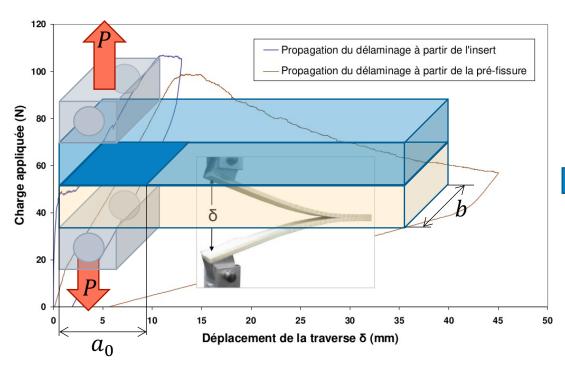
La phénoménologie associée à la rupture des assemblages : rupture d'un substrat

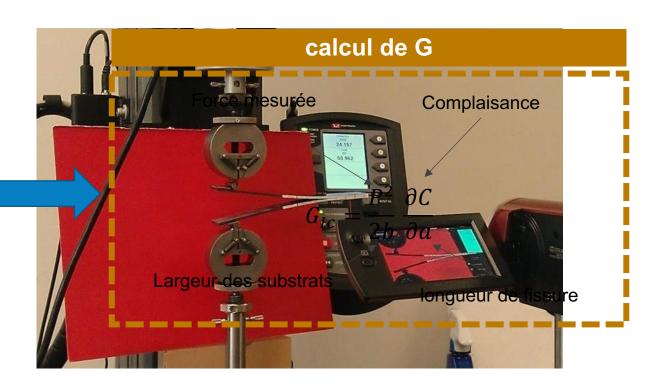


Rupture d'un substrat hors zone d'assemblage

- ⇒ Résistance de la soudure > Résistance du substrat
- ⇒ Soudage de qualité souhaitée
- ⇒ Ne donne pas de quantification de la résistance de la soudure

Les grandeurs physiques associées à la rupture des assemblages

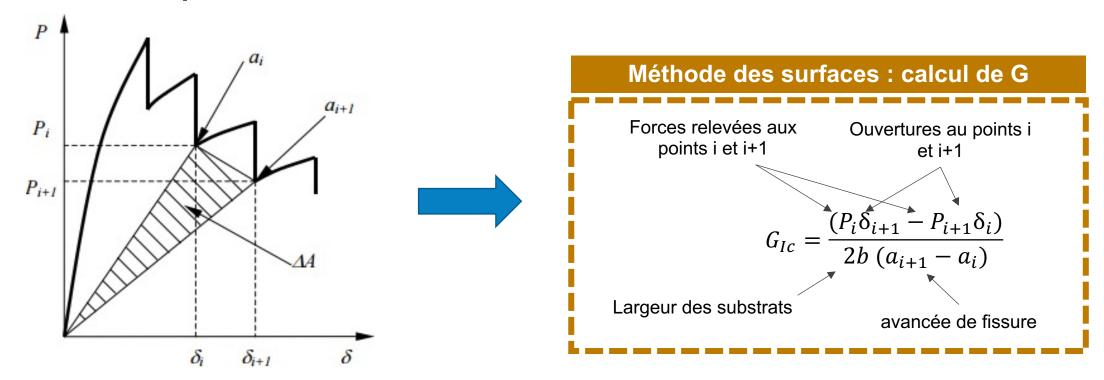

- Critère de contrainte maximale : Contrainte la plus importante obtenue lors de la rupture de l'assemblage
- Taux de restitution d'énergie G (Griffith 1920) : Energie nécessaire pour l'avancement d'une fissure
 - ⇒ Principe de conservation d'énergie totale respecté lors du processus de propagation



Module 3 (M3)

Tenue mécanique des assemblages soudés

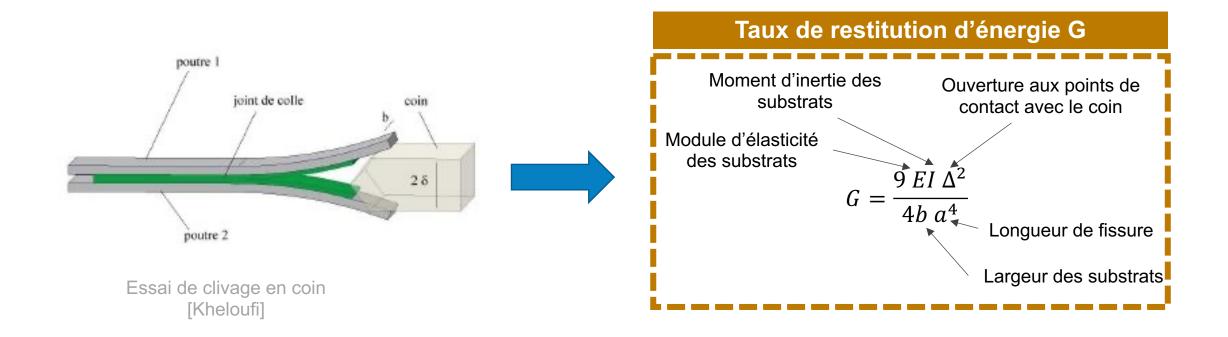
Essais mécaniques en mode I : l'essai Double Cantilever Beam ou DCB



Courbe caractéristique de l'essai DCB Représentation de l'essai DCB

Montage expérimental de l'essai DCB [Beckelynck,2016]

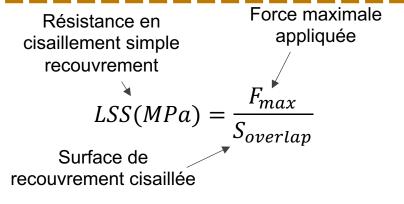
- ⇒ Vérifier l'absence de plastification des renforts
- ⇒ Tracé des courbes expérimentales
 ⇒ Le calcul de G dépend des paramètres géométriques, du matériau et des mesures


Essais mécaniques en mode I : l'essai Double Cantilever Beam ou DCB

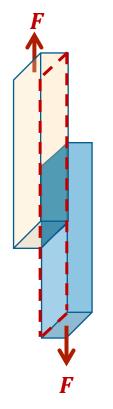
Méthode des surfaces [Ashemy,1990]

- ⇒ Post-traitement relativement rapide des essais
- \Rightarrow Nécessité de bien choisir l'incrément $(\delta_{i+1} \delta_i)$ pour éviter les fortes approximations sur G
- ⇒ Le calcul de G dépend des paramètres géométriques, du matériau et des mesures

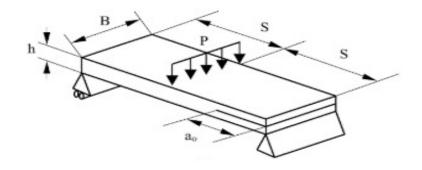
Essais mécaniques en mode I : l'essai Wedge test ou Clivage en coin



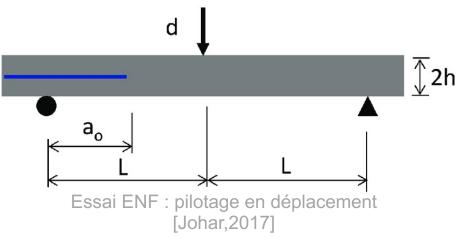
- ⇒ Vérifier l'absence de plastification des renforts
- ⇒ Nécessité de bien choisir les paramètres géométriques et le matériau du coin
- ⇒ Le calcul de G dépend des paramètres géométriques, du matériau et des mesures


Essais mécaniques en mode II : l'essai Single Lap Shear ou Cisaillement simple recouvrement

- ⇒ Pas de pré-fissure : on assimile à un essai de rupture mode II
- ⇒ Plan de chargement doit absolument passer par la zone de recouvrement

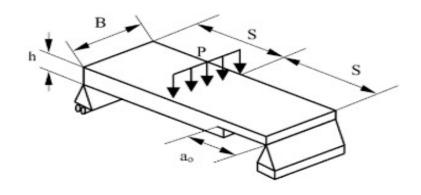


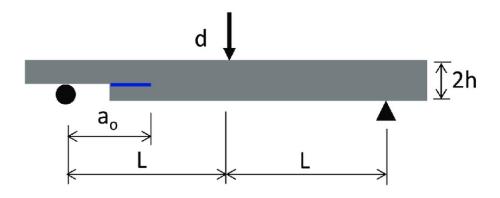
Essais mécaniques en mode II



Essai de cisaillement simple recouvrement

SLSSingle Lap shear


Essai ENF: pilotage en charge


- ⇒ ENF : éprouvette fissurée
- ⇒ La rupture en mode II se fait par une sollicitation de flexion

ENFEnd Notched Flexure

Essais mécaniques en mode mixte : l'essai Mixed Mode Flexure

Essai MMF: pilotage en charge

Essai MMF : pilotage en déplacement [Johar,2017]

- ⇒ Modes de rupture combinés : mode I + mode II
- ⇒ Mode I obtenu par la flexion combinée à la longueur du bras n'allant pas jusqu'à l'appui
- ⇒ Mode II : du à la sollicitation de flexion

Bilan sur les essais mécaniques

☐ Essais les plus utilisés : LSS pour l'ingénierie / DCB – Clivage en coin pour le développement et le domaine de la recherche

LSS

- ☐ Essai **rapide** et **simple** de mise en œuvre
- ☐ Résultats facilement comparables entre différentes configurations expérimentales de soudage
- Notion de résistance en cisaillement simple recouvrement facilement compréhensible
- ☐ Critère de **contrainte maximale** : **pas d'information** sur les aspect de **propagation**de fissure / **stabilité** de propagation

DCB / Clivage en coin

- ☐ Critère énergétique : traduit l'énergie potentielle totale des substrats
- ☐ Critère énergétique : information sur l'initiation et la propagation de fissure / stabilité de propagation
- ☐ Essai plus fastidieux à mettre en œuvre : nécessité de la mesure d'avancée de fissure et de l'ouverture
- ☐ Besoin en matériel expérimental + important

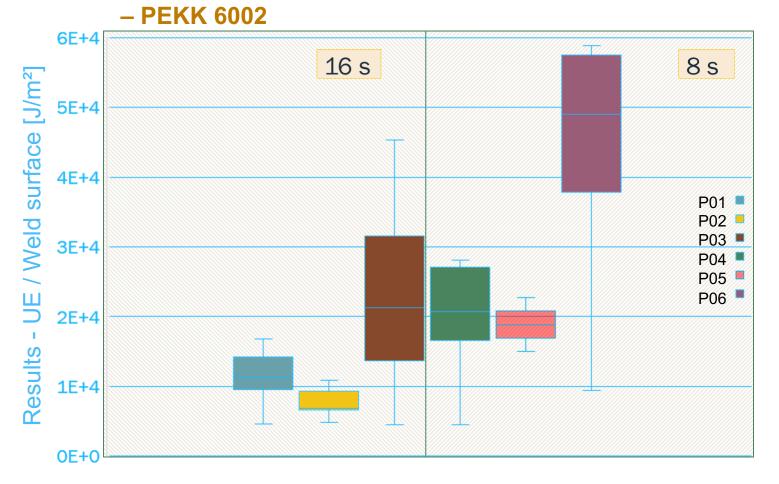
Module 4 (M4)

Relation entre tenue interfaciale et paramètres-procédés

Paramètres influençant la tenue mécanique

☐ Teneur en eau des substrats : vaporisation lors de l'irradiation → création de bulles (défavorable)
□ Rugosité de surfaces : contact intime → maximiser le contact intime (favorable)
☐ Température atteinte lors du procédé → augmenter l'interdiffusion (favorable)
□ Paramètres matériaux et paramètres procédés
☐ Longueur d'onde du laser / propriétés optiques du matériau
☐ Gamme de puissance : [interaction onde-matière – dégradation du matériau]
☐ Vitesse de déplacement / densité d'énergie
☐ Force appliquée

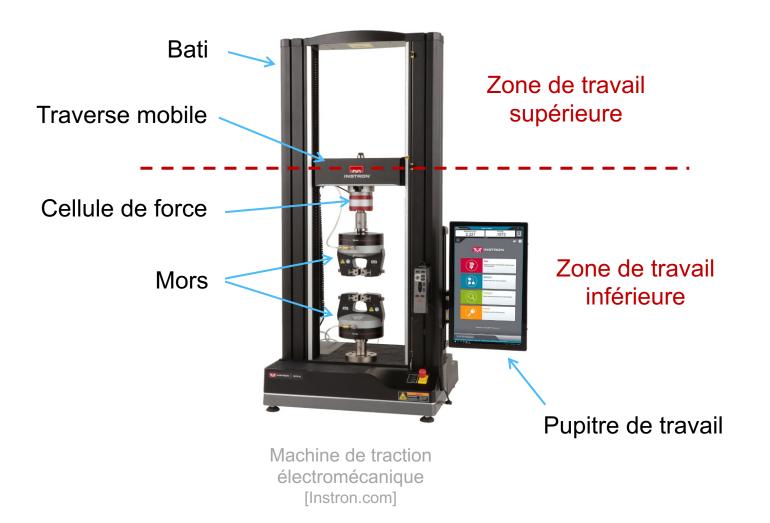
Module 5 (M5)


Conclusion générale

□ Il existe 3 modes de rupture.
☐ Il existe 3 types de faciès de rupture d'assemblage soudés.
□ Pour déterminer la tenue mécanique des joints soudés, 2 grandeurs sont disponibles : i) critère de la contrainte maximale, ii) taux de restitution d'énergie.
☐ De nombreux essais existent pour calculer ces grandeurs pour les 3 modes de rupture et leurs couplages éventuels
☐ Le calcul de ces grandeurs sont basés sur : i) les propriétés des matériaux, ii) les géométries des assemblages et iii) les mesures lors de l'essai (force / ouverture / avancée de fissure)
☐ Les essais les plus courants sont : i) le single lap shear et ii) l'essai Double Cantilever Beam (DCB)

M6 – Evaluation

M4 - Relation entre tenue interfaciale et paramètres-procédés


Relation temps d'irradiation – tenue mécanique : exemple du soudage ligne PEKK 6002

	P(W)	t(s)	E (J)
P01	17,5	16	280
P02	15	16	240
P03	13,75	16	220
P04	35	8	280
P05	30	8	240
P06	27,5	8	220

- ⇒ Privilégier les temps court permet d'augmenter G (pour un niveau énergétique équivalent)
- ⇒ Dispersion importante : renouveler les expériences

Cas de l'essai simple recouvrement : utilisation machine de traction

- ⇒ Choix de l'espace de travail
- ⇒ Choix de la cellule de charge (en fonction des forces maximales)
- ⇒ Choix des mors adaptés à l'essai
- ⇒ Création de la méthode d'essai

Cas de l'essai simple recouvrement : Méthode d'essai / Protocole expérimental

- \Rightarrow Pilotage en charge : 2800 N. mm^{-1}
- ⇒ Cellule de charge : $10 50 \, kN$ (en fonction des cellules disponibles)
- ⇒ Critère d'arret d'essai : chute de charge de 40 %
- ⇒ Données à enregistrer : temps, déplacement, Charge

- ⇒ 1/ Tarer la cellule de charge à vide
- ⇒ 2/ Bouger la traverse mobile de façon à pouvoir positionner l'éprouvette
- ⇒ 3/ Installer l'éprouvette en serrant le mors du haut, puis le mors du bas
- ⇒ 4/ Bouger la traverse pour revenir à charge nulle
- ⇒ 5/ Mettre une précharge
- ⇒ 6/ Tarer la charge et réinitialiser la longueur initiale
- ⇒ 7/ Lancer l'essai
- ⇒ 8/ Enregistrer les données à la fin de l'essai