INSA Toulouse, cycle préparatoire

Analyse 1 - Feuille TD #2

Développements limités, branches infinies, développements asymptotiques

Exercice 1 Développements Limités (DL)

- A) Retrouver par vous-mêmes:
- a) les DL usuels du cours.
- b) le DL de tanh(x) en 0 a l'ordre 3.
- B) Ecrire un DL de Taylor au point indiqué, à l'ordre p des fonctions suivantes :
- a) ordre 2 en 0, $f(x) = \exp(\cos(x))$. Corrige: cf poly. de cours.

b) ordre 2 en 0, $f(x) = \frac{x}{\sin(x)}$.

c) ordre 2 en 0, $f(x) = (1 + \sin(x))^x$.

Indice. Commencez par écrire classiquement la puissance ainsi : $y^x = \exp(x \ln(y))$ puis ...

- d) ordre 3 en 0, $\frac{1}{\cos x}$.
- e) ordre 3 en 1, $f(x) = \sqrt{x}$.
- f) ordre 3 en 0, $f(x) = \frac{\ln(1+x)}{(1+x)^2}$.
- g) ordre 2 en $\frac{\pi}{2}$, $f(x) = (\sin(x))^x$.

Indice. Commencez comme précédemment (ré-ecriture de la puissance) puis changement de variable : $y = (x - \pi/2)...$

Exercice 2 Branches infinies de fonctions

Etudier le comportement des fonctions suivantes en + ou - ∞ (selon l'indication donnée) :

a) en
$$+\infty$$
, $f(x) = \frac{x+1}{1 + \exp(\frac{1}{x})}$.

b) en
$$+\infty$$
, $f(x) = x + x \tanh(\frac{x}{x^2 + 1})$.
Indice: on utilisera le DL_3 en 0 de $\tanh(x)$...

c) en
$$+\infty$$
, $f(t) = (1+t)\arctan(1+\frac{2}{t})$.

Exercice 3 Développements Asymptotiques (DA)

Ecrire les développements asymptotiques des fonctions suivantes :

a)
$$f(x) = \cot an(x) = (\tan(x))^{-1}$$
 en 0, à la précision x^3 .

b)
$$f(x) = (\frac{1}{\ln(1+x)})^2$$
 en 0, à la précision x .

c)
$$f(x) = x \ln(x+1) - (x+1) \ln(x)$$
 en $+\infty$, à la précision $\frac{1}{x^2}$. (Indice: On commencera par utiliser la propriété $\ln(x+1) = \ln(x(1+1/x))$.

d)
$$f(x)=\exp(1/x)-\exp(1/(x-1))$$
 à la précision $\frac{1}{x^2}$ en $+\infty$, la précision $\frac{1}{x^2}$. En déduire la valeur de $\lim_{+\infty}[x^2f(x)]$.