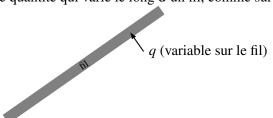


Ceci n'est pas un cours de mathématique, il s'agit simplement d'une rapide description, à l'aide d'exemples, de la méthode à employer pour calculer des intégrales en physique. C'est certainement très sale d'un point de vue mathématique.

1.1 Rappels sur les intégrales simples

1.1.1 Intégrales scalaires

Comment calculer un intégrale simple ? Imaginons que l'on souhaite calculer I qui est la somme des valeurs de q, une quantité qui varie le long d'un fil, comme sur la figure ci-dessous.

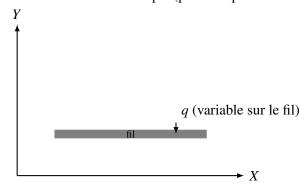


1.1.2 Cheminement à suivre

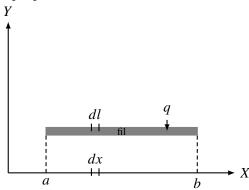
1. On écrit l'intégrale :

$$I = \int_{fil} q \cdot dl$$

2. On choisit un **système de coordonnées** adapté (par exemple : cartésien, (x, y)).



3. On exprime dl en fonction des déplacements de base (dx, dy). Ici, dl = dx. Nous verrons les cas plus compliqué plus tard.



On a donc:

$$I = \int_{fil} q \cdot dx$$

4. On **exprime** q **en fonction de** x. Soit cela vous est donné, soit il faut le déterminer. On va imaginer (**Attention : ce n'est qu'un exemple**) qu'on nous donne $q(x) = q_0 \cdot (1 + x/L)$ (q_0 et L connus).

$$I = \int_{fil} q_0 \cdot (1 + x/L) \cdot dx$$

5. Dès qu'il ne reste plus que des infinitesimaux de base $(dx, dy, dr, d\theta, \text{ etc})$, on peut déterminer les **bornes** de l'intégrale :

$$I = \int_{x=a}^{x=b} q_0 \cdot (1 + x/L) \cdot dx$$

6. On sort de l'intégrale tout ce qui est **indépendant** de x. Puis on **résout** (en trouvant une primitive, bla, bla, bla.)

$$I = q_0 \int_a^b (1 + x/L) \cdot dx$$

$$I = q_0 \left(\int_a^b 1 \cdot dx + \int_a^b x/L \cdot dx \right)$$

$$I = q_0 \left(\int_a^b 1 \cdot dx + \frac{1}{L} \int_a^b x \cdot dx \right)$$

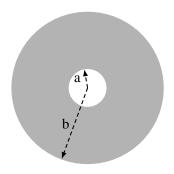
$$I = q_0 \left((b - a) + \frac{1}{L} \left(\frac{b^2}{2} - \frac{a^2}{2} \right) \right)$$

Et voilà c'est fini ! Si par exemple a = 0 et b = L :

$$I = q_0 \frac{3L}{2}$$

1.2 Intégrales doubles

Imaginons que l'on souhaite calculer la somme d'une quantité q qui varie sur un disque percé.



1.2.1 Cheminement à suivre

1. On écrit l'intégrale :

$$I = \iint_{disque} q \cdot dS$$

- 2. On choisit un **système de coordonnées** adapté (par exemple : polaire, (r, θ)).
- 3. On exprime dS en fonction des déplacements de base $(dr, d\theta)$. Ici, $dS = dr \times r \times d\theta$ (voir cours de mécanique).

$$I = \iint_{disque} q \cdot r \cdot dr \cdot d\theta$$

4. On **exprime** q **en fonction de** r **et** θ . Soit cela vous est donné, soit il faut le déterminer. On va imaginer (**Attention : ce n'est qu'un exemple**) qu'on nous donne $q(r,\theta) = C \times \frac{1}{r^2}$ (C connu).

$$I = \iint_{disque} \frac{C}{r^2} \cdot r \cdot dr \cdot d\theta$$

$$I = \iint_{disque} \frac{C}{r} \cdot dr \cdot d\theta$$

5. On détermine les **bornes** de l'intégrale, ici, r varie de a à b et θ varie de 0 à 2π pour couvrir tout le disque. On écrit les intégrales dans l'ordre qu'on veut.

$$I = \int_{r=a}^{r=b} \int_{\theta=0}^{\theta=2\pi} \frac{C}{r} dr \cdot d\theta$$

- 6. On intègre dans l'ordre qu'on veut (soit sur r d'abord, soit sur θ). Commençons par intégrer sur θ par exemple :
- 7. On sort de l'intégrale (celle le plus à droite) tout ce qui est **indépendant** de cette intégrale : Puisque r, C et dr sont indépendants de θ , je peux les sortir de l'intégrale sur θ :

$$I = \int_{a}^{b} \frac{C}{r} dr \cdot \left(\int_{0}^{2\pi} d\theta \right)$$

$$I = \int_{a}^{b} \frac{C}{r} dr \cdot (2\pi)$$

On intègre ensuite sur r (2π , et C ne dépendent pas de r):

$$I = 2\pi C \int_{a}^{b} \frac{1}{r} dr$$

$$I = 2\pi C \left(ln(b) - ln(a) \right)$$

Et voilà!

1.3 intégrales triples

C'est là même chose que pour les intégrales doubles, mais avec une intégrale en plus. On intègre aussi dans l'ordre que l'on veut.

1.4 Exemples

1.4.1 Intégrale double en coordonnées cartésiennes

$$I = \iint x \cdot dx \cdot dy$$

$$I = \int_{x_1}^{x_2} \int_{y_1}^{y_2} x \cdot dx \cdot dy$$

$$I = \int_{x_1}^{x_2} x dx \cdot \left(\int_{y_1}^{y_2} dy \right)$$

$$I = \int_{x_1}^{x_2} x (y_2 - y_1) dx$$

$$I = (y_2 - y_1) \int_{x_1}^{x_2} x dx$$

$$I = (y_2 - y_1) \frac{x_2^2 - x_1^2}{2}$$

1.4.2 Intégrale double en coordonnées cartésiennes (plus compliqué)

$$I = \iint (1+xy^2) \cdot dx \cdot dy$$

$$I = \iint 1 dx \cdot dy + \int_{x_1}^{x_2} \int_{y_1}^{y_2} x \times y^2 \cdot dx \cdot dy$$

$$I = (y_2 - y_1)(x_2 - x_1) + \int_{x_1}^{x_2} x dx \cdot \left(\int_{y_1}^{y_2} y^2 dy\right)$$

$$I = (y_2 - y_1)(x_2 - x_1) + \int_{x_1}^{x_2} x \left(\frac{y_2^3 - y_1^3}{3}\right) dx$$

$$I = (y_2 - y_1)(x_2 - x_1) + \left(\frac{y_2^3 - y_1^3}{3}\right) \int_{x_1}^{x_2} x dx$$

$$I = (y_2 - y_1)(x_2 - x_1) + \frac{y_2^3 - y_1^3}{3} \frac{x_2^2 - x_1^2}{2}$$

1.4.3 Intégrale double en coordonnées cartésiennes (encore plus compliqué)

$$I = \iint e^{y/x} \cdot dx \cdot dy$$

ici on ne peut pas sortir le terme $e^{y/x}$ puisqu'il dépend à la fois de x et de y. Qu'à cela ne tienne, on intègre d'abord par rapport à y, en notant bien que x est une constante lors de l'intégration sur y.

$$I = \int_{y_1}^{x_2} \left[x e^{xy} \right]_{y_1}^{y_2} dx$$

$$I = \int_{x_1}^{x_2} (xe^{xy_2} - xe^{xy_1}) dx$$
$$I = I_1 - I_2$$

Là ça devient compliqué, on va montrer ce qui se passe pour le premier terme (c'est la même chose pour le deuxième) :

$$I_{1} = \int_{x_{1}}^{x_{2}} x e^{xy_{2}} dx$$

$$I = \int_{x_{1}}^{x_{2}} (x e^{xy_{2}} - x e^{xy_{1}}) dx$$

On intègre (en utilisant une intégration par partie, ou bien en demandant à wolfram alpha http://www.wolframalpha.com/), en gardant en tête que y_2 est une constante. Je vous donne le résultat, vous pouvez vérifier que ça marche.

$$I_1 = \left[e^{xy_2} \frac{xy_2 - 1}{y_2^2} \right]_{x_1}^{x_2}$$