3.2 : La relation de préférence

Site: Moodle Université Numérique
Cours: Microéconomie 1 : Les décisions du producteur et du consommateur
Livre: 3.2 : La relation de préférence
Imprimé par: Visiteur anonyme
Date: mercredi 4 décembre 2024, 10:04

1. Classer les alternatives

Un consommateur doit effectuer un choix entre des paniers de biens.

Pour représenter ce qu'il préfère, on peut utiliser une relation mathématique d'ordre, qui classe simplement les diverses possibilités.

A = {a, b, …} = ensemble des options possibles, c'est-à dire des paniers de bien. Par exemple, a = (3kg pommes, 2kg oranges, 1l d’eau), b = (2kg pommes, 2kg oranges, 1,5 l d’eau),…  etc.

\( \succeq \)   = relation de préférence, définie sur A, pour l’individu considéré.

  « a \( \succeq \)»  se lit :

  « Le choix a est au moins aussi bon que le choix b pour l’individu ».

[Nb. Les options doivent être finement définies : Un jus d’orange frais ici et maintenant n’est pas la même chose que 1) un jus pas frais, 2) un jus disponible dans 1 heure, 3) un jus disponible à 10 km, etc]


2. Une préférence rationnelle

On dit que la relation de préférence \( \succeq \) est rationelle si :

–elle est complète : "Pour tous x et y, éléments de A, on a    x \( \succeq \) y   ou   y \( \succeq \) x ;

  (il est possible de classer toutes les options, on peut être indifférent mais on ne peut pas « ne pas savoir »)

et

–elle est transitive : " Pour tous x, y et z, éléments de A,

  x \( \succeq \) y     et     y \( \succeq \)  z   impliquent     x \( \succeq \) z."

[Note. Vous remarquerez que la notation évoque le ≥. Cela aide à comprendre l'ordre. Mais attention, on ne peut pas additioner, multiplier, etc. les paniers de bien comme des chiffres !]


3. Préférence stricte et indifférence

On déduit de la relation de préférence (dite aussi préférence "faible") \( \succeq \) les relations :

–de préférence stricte, notée \( \succ \) :

  a \( \succ \) b     (on a   a \( \succeq \) b    mais on n'a PAS  b \( \succeq \) a).

–d’indifférence, notée ~ :

  a ~            (on a à la fois    a \( \succeq \) b   et    b \( \succeq \) a).


4. La rationalité est-elle une contrainte forte ?

La "rationalité" d'une relation de préférence est une contrainte assez faible :

  • Il semble raisonnable que les individus aient des préférences transitives (Si un individu préfère un restaurant traditionnel à un restaurant végétarien, et un restaurant végétarien à un restaurant de poisson, alors il préfère a priori un restaurant traditionnel à un restaurant de poisson. Attention, un groupe d'amis peut ne pas avoir des préférences "globales" transitives, mais chacun des individus, si).
  • Et dans la plupart des cas, la complétude est aussi une hypothèse très acceptable : on sait classer les paniers, sachant qu'il est possible d'aimer autant un panier qu'un autre, c'est-à dire d'être indifférent.
Je vous propose de chercher des exemples de situations où vos préférences ne sont pas transitives ou pas complètes. Vous verrez, ce n'est pas facile à trouver.

Note : Il peut être très difficile de classer des alternatives dans certaines situations très anxiogènes, avec beaucoup d'émotion [Supposez par exemple que vous devez choisir entre deux traitements médicaux pour traiter une maladie très handicapante. L'un des traitements est très risqué mais très efficace quand il réussit, et l'autre est beaucoup moins risqué mais permet beaucoup moins souvent de vous guérir. Classer les deux est difficile, et pourtant on ne peut pas dire qu'on est "indifférent"]. Ce type de situation est cependant peu fréquent.

5. La préférence est une relation ordinale

Attention, la relation de préférence est une relation ordinale, pas cardinale !

Cela signifie qu'elle permet de classer des possibilités, mais elle ne permet pas de comparer l'intensité de la préférence entre ces possibilités.

Supposez que vous préférez un tout petit peu avoir 2 oranges et 3 pommes (panier a = (2,3)) plutôt qu'avoir 3 oranges et 2 pommes (panier b = (3,2)), mais que vous préférez très fortement avoir 15 oranges et 15 pommes (panier c = (15, 15)) plutôt que a.

Le panier a est préféré au panier b : a \( \succ \) b

Le panier c est préféré au panier a : c \( \succ \) a

(et par transitivité, c \( \succ \) b).

La relation de préférence ne permet pas de voir que c est très largement préféré à a et à b, alors que a est juste un petit peu préféré à b.

6. Quelques hypothèses fréquentes sur les préférences

La relation de préférence \( \succeq \) est rationnelle si elle est complète et transitive. D'autres propriétés seront souvent supposées. Voici leur définition [Vous n'avez à retenir que l'interprétation, pas la définition technique !] :

  • La relation de préférence est monotone si 
    lorsque tous les éléments du vecteur (panier) x' sont strictement plus grands que tous les éléments du vecteur x,   alors   x’  ≻  x.  
    [Interprétation : On préfère avoir toujours plus que moins de chaque bien... (donc il n'y a pas de "mal" parmi les biens considérés). On parle aussi de non-satiété : le consommateur n'est jamais "rassasié"]
  • La relation de préférence  est strictement convexe si

    pour tout x’ et x’’, si x’ x et x’’ x,  alors  (α x’ + (1 – α) x’’) x, pour tout multiplicateur α tel que 0 < α < 1.

  • [Interprétation : Si deux paniers sont tous deux préférés à un troisième, alors un mélange de ces deux biens lui est aussi préféré. Cela signifie que les "mélanges" de paniers de biens ne sont pas généralement moins bien que les paniers seuls. La variété n'est pas négative.]